Possible to use work-energy theorem from a non-inertial frame?

AI Thread Summary
The discussion centers on the application of the work-energy theorem in non-inertial reference frames, specifically regarding a wheel rolling down an inclined plane. While the initial solution is framed from the ground, questions arise about performing calculations from the center of mass, which is an accelerating frame. It is clarified that while the center of mass frame is non-inertial, calculations can still be performed by accounting for the work done by inertia forces and friction. The static friction does not perform work in the ground frame but does in the moving frame. Thus, it is indeed possible to analyze the problem from the center of mass frame with the appropriate considerations.
zenterix
Messages
774
Reaction score
84
Homework Statement
Consider a wheel of mass m and radius R rolling down a plane inclined at an angle ϕrelative to the horizontal ground. The wheel starts at rest, and does not slip. What is the velocity of the wheel after it has rolled down a height of h?
Relevant Equations
Here is a solution:
$$E_{m_i}=mgh$$

$$E_{m_f}=\frac{mv_{cm,f}^2}{2}+\frac{I_{cm}\omega^2}{2}$$

$$v_{cm,f}=R\omega$$

No non-conservative forces do any work on the system (in particular static friction) so mechanical energy is conserved.

$$E_{m_i}=E_{m_f}$$

$$\implies mgh= \frac{mv_{cm,f}^2}{2}+\frac{I_{cm}\omega^2}{2}$$

$$\implies v_{cm_f}=\sqrt{\frac{2mgh}{m+\frac{I_{cm}}{R^2}}}$$
In learning about translational and rotational motion, I solved a problem involving a wheel rolling down an inclined plane without slipping.

There are multiple ways to solve this problem, but I want to focus on solutions using energy.

Now to my questions. The reference frame in the posted solution is the ground, correct?

Is it possible to perform this calculation from the frame of the center of mass?

I'm going to guess no because the center of mass is accelerating due to gravity. It is not an inertial reference frame. Is this correct? I just wanted to be sure.
 
Physics news on Phys.org
zenterix said:
Homework Statement:: Consider a wheel of mass m and radius R rolling down a plane inclined at an angle ϕrelative to the horizontal ground. The wheel starts at rest, and does not slip. What is the velocity of the wheel after it has rolled down a height of h?
Relevant Equations:: Here is a solution:
$$E_{m_i}=mgh$$

$$E_{m_f}=\frac{mv_{cm,f}^2}{2}+\frac{I_{cm}\omega^2}{2}$$

$$v_{cm,f}=R\omega$$

No non-conservative forces do any work on the system (in particular static friction) so mechanical energy is conserved.

$$E_{m_i}=E_{m_f}$$

$$\implies mgh= \frac{mv_{cm,f}^2}{2}+\frac{I_{cm}\omega^2}{2}$$

$$\implies v_{cm_f}=\sqrt{\frac{2mgh}{m+\frac{I_{cm}}{R^2}}}$$

Is it possible to perform this calculation from the frame of the center of mass?
Yes it is possible but you must take into account a work done by the inertia forces and moreover a work done by friction. The friction does not work relative the ground frame but it do work relative moving frame. Even if the frame moves with constant velocity
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top