Possible webpage title: Understanding Combinations with Identical Objects

  • Thread starter Thread starter Polymath89
  • Start date Start date
  • Tags Tags
    Combinations
Polymath89
Messages
27
Reaction score
0
I have two basic questions about combinations. If there are e.g. 10 objects of which 3 are identical and you want to pick a group of 6 out of those 10, how many groups could you get in this case? I know how basic combinations work, but what if there are identical objects involved?

And my second question refers to these problems:

"In how many ways can you distribute 5 marbles in 3 identical baskets such that each basket has at least 1 marble?" and a variation of that with "3 distinct baskets".

Well for each question there are the possibilities that either one basket gets 3 and the other two 1 or two baskets get 2 and the remaining one 1. Now if the baskets are identical the solution for the 3-1-1 outcome is:

5C3*2C1*1C1/2!

and for the problem in which the baskets are distinct:

3C1*5C3*2C1*1C1

I understand the intuition behind the solution for the problem with the distinct baskets, but I don't understand why you have to divide by 2! on the problem with identical baskets, because I thought that the order does not matter, and 5C3*2C1*1C1 already reflects that the order does not matter, doesn't it?

I'd appreciate a short answer. Thanks in advance.
 
Physics news on Phys.org
Hey Polymath89.

The easiest way to think about this is to consider the complement where at least one basket doesn't have one marble.

This is given by either (5,0,0) (4,1,0) or (3,2,0) combinations. The first can happen 3C1 times and the other two can happen 3C2 times.

In total we get 3C1 + 2*3C2 = 3 + 12 = 15 different ways of not getting at least 1 in every slot.

I'll think about the number of possibilities in a sec.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top