Potential Drop Across 15-mH Inductor at t=0?

AI Thread Summary
At t=0, the current through the circuit is initially considered to be 0 Amps, leading to the assumption that there is no voltage drop across the resistors. However, it is clarified that the uncharged capacitor will start charging immediately, resulting in a current that affects the voltage across the resistors. Specifically, the 75-ohm and 25-ohm resistors behave as if they are in series, causing a 150-volt drop across the 75-ohm resistor. Consequently, this voltage drop also applies to the parallel 15-mH inductor, confirming a potential difference of 150 volts across it. The discussion emphasizes the importance of correctly analyzing the circuit's behavior at the moment the switch is closed.
Truman I
Messages
16
Reaction score
4
Homework Statement
1) For the circuit shown in the figure, the switch has been open for a very long time.
(a) What is the potential drop across the 15.0-mH inductor just after closing the switch?
Relevant Equations
ε = L*(di/dt)
V_R = iR
hw q 1.PNG

At t=0, I believe that the current is instantaneously 0 Amps. If that is correct, then technically at that instant there is no voltage drop across any of the resistors due to Ohm's Law. So I replaced the resistors with wire. Next, I tried replacing all of the capacitors with open circuits to simplify everything further. When I did that, there was only one closed loop for the current to travel through, and that's the loop with my 15-mH inductor. But that's where I'm getting lost.

My only other thought is that I need to use the equation ε = L*(di/dt) but there are two unknowns. I want to find ε for the 15 mH inductor, but I don't know di/dt.
 
Physics news on Phys.org
Truman I said:
At t=0, I believe that the current is instantaneously 0 Amps.
Based on what, precisely ?
You have a voltage source with an internal resistance of 25 ##\Omega## and three branches. From left to right LCR, RL and RC.
Truman I said:
If that is correct, then technically at that instant there is no voltage drop across any of the resistors due to Ohm's Law
It is certainly not correct for the rightmost branch. Check RC circuit under: Time considerations. The capacitor will instantaneously start charging with a current of 1 A. And the 75 ##\Omega## and 25 ##\Omega## will have a voltage drop of 150 V and 50 V, respectively
Truman I said:
I tried replacing all of the capacitors with open circuits to simplify everything further
That's not an argument ! The capacitors are uncharged and if they are connected to a voltage source, they start charging to the tune of ##\displaystyle{I = C{dV\over dt}}\ ##. I.e. instantaneously they are short-circuits, not open circuits !

Now check RL circuits under : Time considerations and try again.

##\ ##
 
Truman I said:
Homework Statement:: 1) For the circuit shown in the figure, the switch has been open for a very long time.
(a) What is the potential drop across the 15.0-mH inductor just after closing the switch?
Relevant Equations:: ε = L*(di/dt)
V_R = iR

At t=0, I believe that the current is instantaneously 0 Amps.
The current where? Remember that the 35 μF capacitor is initially uncharged and as soon as the switch is closed it acts as a "short". Redraw the circuit taking that into account.
 
BvU said:
It is certainly not correct for the rightmost branch. Check RC circuit under: Time considerations. The capacitor will instantaneously start charging with a current of 1 A. And the 75 ##\Omega## and 25 ##\Omega## will have a voltage drop of 150 V and 50 V, respectively

Yeah I definitely had a misconception about current there. So at t=0, the 75 ohm and 25 ohm resistors act like they are in series. 150 Volts will drop across the 75 ohm resistor (Ohm's Law). Therefore, because the 15-mH Inductor is in parallel with the 75 ohm resistor, there will also be a potential difference of 150 volts.

Is that logic correct?
 
Truman I said:
Yeah I definitely had a misconception about current there. So at t=0, the 75 ohm and 25 ohm resistors act like they are in series. 150 Volts will drop across the 75 ohm resistor (Ohm's Law). Therefore, because the 15-mH Inductor is in parallel with the 75 ohm resistor, there will also be a potential difference of 150 volts.

Is that logic correct?
That looks about right.
 
kuruman said:
That looks about right.

Awesome, thanks for the help!
 
  • Like
Likes kuruman and BvU
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top