Potential Due to a Collection Charges

AI Thread Summary
The discussion focuses on calculating electric potential due to point charges using the formula 1/(4πє) ∑ q/r. Participants clarify that when determining potential between two charges, only the magnitude of the distance (r) should be considered, as potential is a scalar quantity. The correct expression for potential includes the distances from each charge, r_1 and r_2, without needing to account for direction. The consensus emphasizes that direction does not affect the calculation of potential. Overall, the conversation reinforces the importance of using distance magnitudes in potential calculations.
simo
Messages
18
Reaction score
0
My text reads for Potential Due to a Collection Charges:

1/(4πє) ∑ q/r

Lets say you want to calculate the potential between two charges. Do you take the magnitude of the distance (r) or do you account for their direction of the charges with respect to the field point.

Based on the examples I have seen, i seems like i should use the magnitude. However, it seems more logical to account for direction.
 
Physics news on Phys.org
potential is a scalar

The potential due to two charges is exactly that given by the formula you provided, thus:
\frac{1}{4\pi\epsilon_0} (\frac{q_1}{r_1} + \frac{q_2}{r_2})

r_1 & r_2 are the distances from each charge. (Direction is not relevant, only distance from each charge.)
 
Woops, I didn't read the forum rules. I appreciate your help Doc Al. This won't happen again.
 
Back
Top