# Potential energy of an electric dipole in electric field

1. Apr 30, 2015

### Sleepycoaster

1. The problem statement, all variables and given/known data
Show that the energy of an ideal dipole p in an electric field E is given by

U = -p ⋅ E

2. Relevant equations

Work = θτ where τ is torque

τ = p × E

3. The attempt at a solution

U = ∫(p × E) dθ' (from θ to 0, since the dipole will eventually align itself with the magnetic field.)
=∫pE(sinθ')dθ'
=-pE(cosθ') with limits θ to 0
=-pE + pE(cosθ)
=p ⋅ E - pE

That's not what I needed to prove. Help?

2. May 1, 2015

### ehild

The formula for the potential energy depends where the zero of the PE is placed. The potential energy is the work done by the force when the object moves from the initial position to the position of zero potential. If the potential energy of the dipole is zero when it is perpendicular to the electric field, you have to integrate from θ to pi/2.

3. May 6, 2015

### Sleepycoaster

Okay, thanks!

Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted