ManishR
- 88
- 0
consider object A with mass m_{A}and inertial positional vector \overrightarrow{r_{A}}
object B with mass m_{B}and inertial positional vector \overrightarrow{r_{B}}
object A with mass m_{C}and inertial positional vector \overrightarrow{r_{C}}
m_{A}\frac{d}{dt^{2}}\overrightarrow{r_{A}}=\overrightarrow{F}{}_{AB}+\overrightarrow{F}{}_{AC}
\Rightarrowm_{A}\frac{d^{2}}{dt^{2}}\overrightarrow{r_{A}}=G\frac{m_{A}m_{B}}{\left|\overrightarrow{r_{A}}-\overrightarrow{r_{B}}\right|^{3}}(\overrightarrow{r_{A}}-\overrightarrow{r_{B}})+G\frac{m_{A}m_{C}}{\left|\overrightarrow{r_{A}}-\overrightarrow{r_{C}}\right|^{3}}(\overrightarrow{r_{A}}-\overrightarrow{r_{B}})
to get potential energy due to B and C, lhs and rhs need to be integrated with a non inertial positional vector. and i don't what that vector is.
please help
object B with mass m_{B}and inertial positional vector \overrightarrow{r_{B}}
object A with mass m_{C}and inertial positional vector \overrightarrow{r_{C}}
m_{A}\frac{d}{dt^{2}}\overrightarrow{r_{A}}=\overrightarrow{F}{}_{AB}+\overrightarrow{F}{}_{AC}
\Rightarrowm_{A}\frac{d^{2}}{dt^{2}}\overrightarrow{r_{A}}=G\frac{m_{A}m_{B}}{\left|\overrightarrow{r_{A}}-\overrightarrow{r_{B}}\right|^{3}}(\overrightarrow{r_{A}}-\overrightarrow{r_{B}})+G\frac{m_{A}m_{C}}{\left|\overrightarrow{r_{A}}-\overrightarrow{r_{C}}\right|^{3}}(\overrightarrow{r_{A}}-\overrightarrow{r_{B}})
to get potential energy due to B and C, lhs and rhs need to be integrated with a non inertial positional vector. and i don't what that vector is.
please help