Potential inside a cylindrical shell with a line charge

In summary, the potential inside a cylindrical shell with a line charge can be calculated using the formula V = λ/2πε₀L * ln(r₂/r₁), where λ is the line charge, ε₀ is the permittivity of free space, L is the length of the line charge, and r₁ and r₂ are the inner and outer radii of the cylindrical shell. This potential is constant along the axis of the cylinder and decreases as the distance from the axis increases. The potential is also affected by the presence of any other charges inside or outside the cylindrical shell.
  • #1
CharlieCW
56
5

Homework Statement



Find the electric potential of an infinitely long cylinder shell of radius ##R## whose walls are grounded, when in its interior a line charge, parallel to the cylinder, is placed at ##r=a## (with ##a<R##) and that has a lineal charge density ##\lambda##.

Homework Equations



Potential of a line charge:

$$\phi(r)=A-\frac{\lambda}{2\pi \epsilon_0}ln(r)=\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{r^2})$$

Poisson equation

$$\nabla^2 \phi=\rho / \epsilon_0$$

The Attempt at a Solution



My first idea was to start with Poisson's equation in cylindrical coordinates and try to solve for the Dirichlet boundary conditions ##\phi(r=R)=0## and ##\phi(r\rightarrow \infty## for all ##\theta\in[0,2\pi]##. However, this leads to a group of three differential equations which are very hard to solve analytically.

Therefore, I tried using the method of images by placing instead a charge line outside of the cylinder at some distance ##r=b##. Therefore, the potential is the sum of the original line charge and the image line charge:

$$\phi(r)=\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{r_1^2})+\frac{\lambda'}{4\pi \epsilon_0}ln(\frac{B^2}{r_2^2})$$

Changing to cylindrical coordinates:

$$\phi(\rho,\phi)=\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{\rho^2+a^2-2\rho acos\phi})+\frac{\lambda'}{4\pi \epsilon_0}ln(\frac{B^2}{\rho^2+b^2-2\rho bcos\phi})$$

Applying the boundary condition ##\phi(r\rightarrow \infty)=0## we can find that ##\lambda'=-\lambda##, which makes sense since the total charge should be zero.

Applying the boundary condition ##\phi(r=R)##, we get:

$$\phi(R,\phi)=\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{R^2+a^2-2\rho acos\phi})-\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{R^2+b^2-2\rho bcos\phi})=0$$

Where we can easily see that it's true only if ##b=a##, which means that the virtual charge line is exactly where the original charge line used to be, so it doesn't make sense.

Therefore, I'm not sure if it's even correct to apply the method of images here, moreover since the original line charge is inside the cylinder and not outside (like this solution https://www.ebah.com.br/content/ABAAAhCJgAJ/jackson-solutions-jackson-2-11-homework-solution).
 
Physics news on Phys.org
  • #2
can you explain ##r_1## and ##r_2## in cylindrical ?
 
  • #3
CharlieCW said:
$$\phi(r)=\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{r_1^2})+\frac{\lambda'}{4\pi \epsilon_0}ln(\frac{B^2}{r_2^2})$$

Changing to cylindrical coordinates:

$$\phi(\rho,\phi)=\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{\rho^2+a^2-2\rho acos\phi})+\frac{\lambda'}{4\pi \epsilon_0}ln(\frac{B^2}{\rho^2+b^2-2\rho bcos\phi})$$

The method of images should work. The trick (and it is tricky) is to get a cylinder of equipotential about the first line. You can do this with another equal and opposite line change at a certain distance.

Hint: first place just the two wires an equal distance from the x-axis, say, and find the equation of the equipotential surfaces. Maybe you have already done that problem previously?
 
Last edited:
  • #4
BvU said:
can you explain ##r_1## and ##r_2## in cylindrical ?

Sure. The ##r_1## and ##r_2## are the distances of the line charges to the observation point. Using the law of cosinus, we can express this distance in terms of the radial distance ##\rho## in cylindrical coordinates as ##r_1^2=\rho^2+a^2-2\rho a cos\phi##. I don't have the drawing, but imagine a triangle with side ##\rho## and ##a## (I also checked in the link that this is correct).

PeroK said:
The method of images should work. The trick (and it is tricky) is to get a cylinder of equipotential about the first line. You can do this with another equal and opposite line change at a certain distance.

Hint: first place just the two wires an equal distance from the x-axis, say, and find the equation of the equipotential surfaces. Maybe you have already done that problem previously?

I checked the potential for an infinite straight wire, which can be written like the one I wrote (depending on how I choose my constant) or like this:

$$\phi(r)=\frac{\lambda}{2\pi \epsilon_0}ln(\frac{2A}{r})$$

I'll try with this one to see if it makes thing easier. Thank you by the way, I was unsure about using the method of images because I had only solved problems where the charges were at the center or outside of the conductor shell. I solved before the case for punctual charges, so I'll work the problem in analogy for the line charges and post the solution in a while.
 
  • #5
PeroK said:
equal
Won't that be difficult ?
 
  • #6
PeroK said:
The method of images should work. The trick (and it is tricky) is to get a cylinder of equipotential about the first line. You can do this with another equal and opposite line change at a certain distance.

Hint: first place just the two wires an equal distance from the x-axis, say, and find the equation of the equipotential surfaces. Maybe you have already done that problem previously?

I worked out a similar case where the cylinder is not grounded but the line charge makes the cylinder an equipotential surface with respect to it. I do this by applying the method of images again and applying the boundary conditions ##\phi(r\rightarrow \infty)=0## and ##\phi(r=R)=V_0##.

From the first boundary condition the procedure is the same as my original post and I get ##\lambda'=-\lambda##. From the second boundary condition I get instead:

$$\phi(R,\phi)=\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{R^2+a^2-2\rho acos\phi})-\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{R^2+b^2-2\rho bcos\phi})=V_0$$

Which after some algebra gives me ##b=\frac{R^2}{a}##. Knowing this it's just a matter of substituting in the previous equations to find the potential inside and outside of the cylinder (outside it's zero since the image line charge doesn't really exist and the field is contained inside the cylinder like a Faraday's cage).

However, when I ground the cylinder I effectively make it's potential equal to zero and I arrive to the issue of my original post (that is, I predict the image line charge is directly over the original line charge).

Nevertheless, the fact that I found that the distance ##b## is independent of ##V_0## makes me think that the solution is also valid even if the cylinder is grounded. Am I correct?
 
  • #7
CharlieCW said:
I worked out a similar case where the cylinder is not grounded but the line charge makes the cylinder an equipotential surface with respect to it. I do this by applying the method of images again and applying the boundary conditions ##\phi(r\rightarrow \infty)=0## and ##\phi(r=R)=V_0##.

From the first boundary condition the procedure is the same as my original post and I get ##\lambda'=-\lambda##. From the second boundary condition I get instead:

$$\phi(R,\phi)=\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{R^2+a^2-2\rho acos\phi})-\frac{\lambda}{4\pi \epsilon_0}ln(\frac{B^2}{R^2+b^2-2\rho bcos\phi})=V_0$$

Which after some algebra gives me ##b=\frac{R^2}{a}##. Knowing this it's just a matter of substituting in the previous equations to find the potential inside and outside of the cylinder (outside it's zero since the image line charge doesn't really exist and the field is contained inside the cylinder like a Faraday's cage).

However, when I ground the cylinder I effectively make it's potential equal to zero and I arrive to the issue of my original post (that is, I predict the image line charge is directly over the original line charge).
Nevertheless, the fact that I found that the distance ##b## is independent of ##V_0## makes me think that the solution is also valid even if the cylinder is grounded. Am I correct?

##b=\frac{R^2}{a}## is correct. Yes, ##b## determines the radius of the equipotential.

That gives you an equipotential on the cylinder, which must be ##0## if the cylinder is grounded. All you need to do then is set the potential equal to ##0##. I would stick with Cartesian coordinates:

##\phi = \frac{\lambda}{4\pi \epsilon_0}\ln(\frac{(x-b)^2 + y^2}{(x-a)^2 + y^2}) + V##

You can then find the constant ##V## that sets the potential to the conventional ##0## for a grounded conductor.

Note that ##b=a## is another solution for zero potential, but that one kills all the internal charge and isn't valid.
 
Last edited:
  • Like
Likes CharlieCW

What is the formula for the potential inside a cylindrical shell with a line charge?

The formula for the potential inside a cylindrical shell with a line charge is V = (λ/2πε0)(ln(R/r)), where λ is the linear charge density, ε0 is the permittivity of free space, R is the radius of the cylinder, and r is the distance from the center of the cylinder.

How does the potential inside a cylindrical shell with a line charge vary with distance from the center of the cylinder?

The potential inside a cylindrical shell with a line charge varies logarithmically with distance from the center of the cylinder. As the distance increases, the potential decreases, but at a decreasing rate.

What happens to the potential inside a cylindrical shell with a line charge as the radius of the cylinder increases?

As the radius of the cylinder increases, the potential inside the cylinder decreases. This is because the electric field becomes weaker as the distance from the line charge increases.

Is the potential inside a cylindrical shell with a line charge affected by the orientation of the cylinder?

No, the potential inside a cylindrical shell with a line charge is not affected by the orientation of the cylinder. As long as the cylinder remains concentric with the line charge, the potential will remain the same.

Can the potential inside a cylindrical shell with a line charge ever be negative?

Yes, the potential inside a cylindrical shell with a line charge can be negative. This occurs when the linear charge density is negative, or when the distance from the center of the cylinder is greater than the radius of the cylinder. In these cases, the potential will be negative, indicating a lower energy state.

Similar threads

  • Advanced Physics Homework Help
Replies
7
Views
1K
Replies
2
Views
708
  • Advanced Physics Homework Help
Replies
11
Views
2K
  • Advanced Physics Homework Help
Replies
2
Views
2K
  • Advanced Physics Homework Help
Replies
4
Views
776
  • Advanced Physics Homework Help
Replies
16
Views
2K
  • Advanced Physics Homework Help
Replies
13
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
410
  • Advanced Physics Homework Help
2
Replies
42
Views
4K
  • Advanced Physics Homework Help
Replies
11
Views
2K
Back
Top