Potential Inside and Outside of a Charged Spherical Shell

Click For Summary
The discussion centers on understanding the potential inside and outside a charged spherical shell, particularly regarding the role of surface charge density (σ) and Legendre polynomials. A participant expresses confusion about how to apply orthogonality of Legendre polynomials without a defined σ. It is clarified that without knowing the surface charge distribution, one cannot effectively cancel Legendre polynomials. Two examples illustrate how different charge distributions affect the potential, emphasizing that knowledge of σ is crucial for solving the problem. Ultimately, understanding the surface charge distribution is essential for determining the potential accurately.
jkthejetplane
Messages
29
Reaction score
4
Homework Statement
I need help on this question that i thought i understood but i really dont. A semi similar example in the book started to spark some brain juice but i ended up more confused than when i started.
Relevant Equations
Legendre polynomials
1617429111262.png

So here was my first go around at it:
1617429419413.png

At first it made sense in my head but don't think my process is correct. Then i noticed the example in the book:
1617429709706.png

1617429772199.png

1617429798846.png

I guess the reasoning isn't 100% there in my head and if i don't have an actual σ, how will i cancel out any legendre polynomials due to orthogonality?
 
Last edited by a moderator:
Physics news on Phys.org
jkthejetplane said:
Homework Statement:: I need help on this question that i thought i understood but i really dont. A semi similar example in the book started to spark some brain juice but i ended up more confused than when i started.
Relevant Equations:: Legendre polynomials

View attachment 280846
So here was my first go around at it:
View attachment 280849
At first it made sense in my head but don't think my process is correct. Then i noticed the example in the book:
View attachment 280850
View attachment 280851
View attachment 280852
I guess the reasoning isn't 100% there in my head and if i don't have an actual σ, how will i cancel out any legendre polynomials due to orthogonality?
You cannot cancel any Legendre polynomials without knowing σ(θ). Take two simple cases that you can do in your head.
1. Uniform density over the sphere implies a 1/r potential and only P0 is non-zero.
2. σ(θ)=σ0cosθ implies a 1/r2 potential and only P1 is non-zero.

In short, if you don't know the surface charge distribution and you don't know the potential, you don't know nuttin'.
 
But you know the surface-charge distribution,
$$\sigma(\vartheta)=\sigma_0 \Theta(0 \leq \vartheta \leq \pi/2).$$
Now you can just use the solution for the coefficients posted in #1.
 
  • Like
Likes vela and Orodruin
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
12K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
7
Views
3K