Potential Inside and Outside of a Charged Spherical Shell

jkthejetplane
Messages
29
Reaction score
4
Homework Statement
I need help on this question that i thought i understood but i really dont. A semi similar example in the book started to spark some brain juice but i ended up more confused than when i started.
Relevant Equations
Legendre polynomials
1617429111262.png

So here was my first go around at it:
1617429419413.png

At first it made sense in my head but don't think my process is correct. Then i noticed the example in the book:
1617429709706.png

1617429772199.png

1617429798846.png

I guess the reasoning isn't 100% there in my head and if i don't have an actual σ, how will i cancel out any legendre polynomials due to orthogonality?
 
Last edited by a moderator:
Physics news on Phys.org
jkthejetplane said:
Homework Statement:: I need help on this question that i thought i understood but i really dont. A semi similar example in the book started to spark some brain juice but i ended up more confused than when i started.
Relevant Equations:: Legendre polynomials

View attachment 280846
So here was my first go around at it:
View attachment 280849
At first it made sense in my head but don't think my process is correct. Then i noticed the example in the book:
View attachment 280850
View attachment 280851
View attachment 280852
I guess the reasoning isn't 100% there in my head and if i don't have an actual σ, how will i cancel out any legendre polynomials due to orthogonality?
You cannot cancel any Legendre polynomials without knowing σ(θ). Take two simple cases that you can do in your head.
1. Uniform density over the sphere implies a 1/r potential and only P0 is non-zero.
2. σ(θ)=σ0cosθ implies a 1/r2 potential and only P1 is non-zero.

In short, if you don't know the surface charge distribution and you don't know the potential, you don't know nuttin'.
 
But you know the surface-charge distribution,
$$\sigma(\vartheta)=\sigma_0 \Theta(0 \leq \vartheta \leq \pi/2).$$
Now you can just use the solution for the coefficients posted in #1.
 
  • Like
Likes vela and Orodruin
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top