Potential Inside and Outside of a Charged Spherical Shell

jkthejetplane
Messages
29
Reaction score
4
Homework Statement
I need help on this question that i thought i understood but i really dont. A semi similar example in the book started to spark some brain juice but i ended up more confused than when i started.
Relevant Equations
Legendre polynomials
1617429111262.png

So here was my first go around at it:
1617429419413.png

At first it made sense in my head but don't think my process is correct. Then i noticed the example in the book:
1617429709706.png

1617429772199.png

1617429798846.png

I guess the reasoning isn't 100% there in my head and if i don't have an actual σ, how will i cancel out any legendre polynomials due to orthogonality?
 
Last edited by a moderator:
Physics news on Phys.org
jkthejetplane said:
Homework Statement:: I need help on this question that i thought i understood but i really dont. A semi similar example in the book started to spark some brain juice but i ended up more confused than when i started.
Relevant Equations:: Legendre polynomials

View attachment 280846
So here was my first go around at it:
View attachment 280849
At first it made sense in my head but don't think my process is correct. Then i noticed the example in the book:
View attachment 280850
View attachment 280851
View attachment 280852
I guess the reasoning isn't 100% there in my head and if i don't have an actual σ, how will i cancel out any legendre polynomials due to orthogonality?
You cannot cancel any Legendre polynomials without knowing σ(θ). Take two simple cases that you can do in your head.
1. Uniform density over the sphere implies a 1/r potential and only P0 is non-zero.
2. σ(θ)=σ0cosθ implies a 1/r2 potential and only P1 is non-zero.

In short, if you don't know the surface charge distribution and you don't know the potential, you don't know nuttin'.
 
But you know the surface-charge distribution,
$$\sigma(\vartheta)=\sigma_0 \Theta(0 \leq \vartheta \leq \pi/2).$$
Now you can just use the solution for the coefficients posted in #1.
 
  • Like
Likes vela and Orodruin
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top