Potential of a Quadrupole (Far Away)

  • Thread starter Thread starter ToothandnaiL
  • Start date Start date
  • Tags Tags
    Potential
AI Thread Summary
The discussion centers on multipole expansion techniques in electrostatics, specifically regarding the treatment of a quadrupole charge configuration. It is established that when analyzing the potential at large distances, the quadrupole term can dominate if the net charge and dipole moment are both zero. The participants clarify that while higher-order terms can be ignored for rough calculations, precision requirements dictate whether additional terms should be included. The term "simple" suggests that only the dominant quadrupole term is necessary for the problem at hand. Overall, the conversation emphasizes the importance of understanding the conditions under which certain terms in the multipole expansion can be neglected.
ToothandnaiL
Messages
6
Reaction score
0
So we're currently covering multipole expansion techniques in my EDM class. The multipole expansion is a summation of integrals each treating a different configuration of discrete charges (monopole, dipole... and so on). The term in the summation that corresponds to the physical configuration that your dealing with, whether it be a monopole, dipole, or whatever, is the dominant term. My first question is: Does that mean it is safe to ignore the other terms in the summation and treat, say, a quadrupole with only the quadrupole term? Secondly, there is a simple formula to express the potential of a discrete charge configuration at a large distance where the configuration appears as a single point charge. The problem I'm looking at has a charge configuration like this: a +3q charge at point z=a, a +q charge at z=-a, a -2q charge at y=a and y=-a, this forms a quadrupole and the problem wants an expression for potential that is valid at large distances from the quadrupole. It uses the word 'simple' to describe the expression for potential so I imagine it's not the multipole expansion formula. Would I use the formula for large distances to treat this problem? The only problem I see with that would be the fact that the net charge would=0 and then the potential would= 0 as well. How could that be the case for this quadrupole?
 
Physics news on Phys.org
A multipole expansion is just a expansion of the potential in terms of powers of ##1/|r-r'|##. If you can verify that a certain collection of charges has neither a net charge nor a dipole moment and that the quadrupole moment is nonzero, it is guaranteed that the quadrupole contribution is dominant over all others far away from the charge distribution.
 
ToothandnaiL said:
Does that mean it is safe to ignore the other terms in the summation and treat, say, a quadrupole with only the quadrupole term?
It depends on the required precision. If you want to know the orbital period of moon to calculate the days of full/new moon, it is fine to treat Earth as a monopole. If you want to know its position with an accurary of centimeters, you have to add more terms.

a +3q charge at point z=a, a +q charge at z=-a, a -2q charge at y=a and y=-a, this forms a quadrupole and the problem wants an expression for potential that is valid at large distances from the quadrupole.
What about the dipole moment?

I think "simple" means the highest order is sufficient.
 
OK, thank you for the replies they give some new ways to think about the problem.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?

Similar threads

Back
Top