Power: Does Mass Make a Difference?

  • Context: High School 
  • Thread starter Thread starter Fabian901
  • Start date Start date
  • Tags Tags
    Difference Mass Power
Click For Summary
SUMMARY

The discussion centers on the relationship between power, force, mass, and acceleration, specifically in the context of mechanics. It is established that while lower mass objects accelerate faster under the same force, both objects will ultimately have the same kinetic energy when the same force is applied over the same distance. Power is defined as the rate of doing work, and in scenarios such as F1 racing, it is crucial for understanding how quickly energy is transferred from the engine to the wheels. The conversation emphasizes the importance of precise terminology in physics and the relevance of power calculations in various engineering applications.

PREREQUISITES
  • Understanding of Newton's Second Law (F = ma)
  • Familiarity with the concepts of kinetic energy and work
  • Knowledge of power as Energy per time (P = E/t)
  • Basic principles of mechanical engineering and efficiency
NEXT STEPS
  • Research the relationship between power and acceleration in mechanical systems
  • Explore the concept of horsepower and its application in automotive engineering
  • Learn about energy conversion efficiency in wind and hydro power systems
  • Investigate the mathematical principles behind calculating power in various engineering scenarios
USEFUL FOR

Mechanical engineers, physics students, automotive enthusiasts, and anyone interested in the principles of power and energy in engineering applications.

Fabian901
Messages
30
Reaction score
0
If Power = Force x Distance / Time, does that mean that if we apply the same force on 2 objects with different masses and we apply the force across the same distance, the object with the lower mass will have a higher power?. The way I'm looking at this is that the object with the lower mass will have a higher acceleration (a = F/m) and therefore reach distance "D" faster than the object with the higher mass. Please correct me if I am wrong as I don't want to go to the next topic without fully understanding this concept.
Thanks in advance!
 
Physics news on Phys.org
Higher power was used to accelerate the lower mass. I wouldn't say the lower mass has a higher power.
 
  • Like
Likes   Reactions: Fabian901
The energy consumption is the same
 
  • Like
Likes   Reactions: Fabian901
The two masses will end up with the same kinetic energy (same force applied times distance). The smaller mass will end up at the end of travel quicker - because the acceleration will be greater. Power is rate of doing work and it is zero if no work is being done, so neither of the masses will 'have' any power at the end. They will be expending 'no power' after being launched. The energy is delivered to the smaller mass faster so the Power is higher- but for a shorter time, of course and Energy is Power times Time.
It pays to be very strict with your use of terms in Physics because they each have specific meanings and applications. Also, there are often alternative ways of approaching problems like this one. It's worth bearing in mind that this sort of problem is often the best approached by energy considerations rather than speed considerations. Here, the simple fact that Energy is the same in both cases, tells you the answer without bothering with working out the acceleration at all (which is not wrong, of course - it just saves time).
 
  • Like
Likes   Reactions: Fabian901
I see, and why is this concept important in mechanics? How does it apply to wind energy for example? Or water power?
 
There are lots of scenarios where it may be important. It is part of the reason why a lighter car would be faster and more efficient than a heavier one, for example.

I can't think of a reason why it would come into play with wind and hydro power though...is there some context to that question?
 
  • Like
Likes   Reactions: Fabian901
Fabian901 said:
I see, and why is this concept important in mechanics? How does it apply to wind energy for example? Or water power?
Which concept are you referring to? I have mentioned several. :)
 
sophiecentaur said:
Which concept are you referring to? I have mentioned several. :)
I'm referring to the concept of power, in which scenario will it be important to calculate power? If you can give me a scenario related to mechanical engineering then that would be better :)
 
russ_watters said:
There are lots of scenarios where it may be important. It is part of the reason why a lighter car would be faster and more efficient than a heavier one, for example.

I can't think of a reason why it would come into play with wind and hydro power though...is there some context to that question?
I have to learn the advantages and disadvantages of using wind power, water power and solar power but I'm just curious as to how they would measure power in wind energy. Perhaps its simply the rate at which kinetic energy of the air is converted into electrical energy but I'm not 100% sure
 
  • #10
Fabian901 said:
I'm referring to the concept of power, in which scenario will it be important to calculate power? If you can give me a scenario related to mechanical engineering then that would be better :)

I guess you don't watch the F1 motor racing?
 
  • Like
Likes   Reactions: Fabian901
  • #11
PeroK said:
I guess you don't watch the F1 motor racing?
Nope, I'm more of a tennis and nba basketball fan. How would power relate to F1 racing? I've always heard the term horsepower which is equal to 746 Watts but I'm not sure what it represents. Is it simply the amount of jules transmitted per second from the engine to the wheels of the F1 car?
 
  • #12
Fabian901 said:
Nope, I'm more of a tennis and nba basketball fan. How would power relate to F1 racing? I've always heard the term horsepower which is equal to 746 Watts but I'm not sure what it represents. Is it simply the amount of jules transmitted per second from the engine to the wheels of the F1 car?

Yes, Power is Energy per second. Horsepower is a measure of power based on the power of an average horse! Try Googling it.

Note that the unit of energy is the Joule (not the jule).
 
  • Like
Likes   Reactions: Fabian901
  • #13
Fabian901 said:
I'm just curious as to how they would measure power in wind energy.
In watts, same as any other power (or horsepower if you prefer --- some might prefer Dalton-furlongs2 per fortnight3, but it's a little awkward for most of us.)

Fabian901 said:
rate at which kinetic energy of the air is converted into electrical energy
Energy type "a" to energy type "b" is an efficiency.
 
  • Like
Likes   Reactions: Fabian901
  • #14
Power (P) is important when you are concerned with how quickly a particular job can be done, or the rate of work - for instance, how long it takes to gat a truck up a hill or a car to 100mph or how many tons of coal can be raised in an hour. That's Energy / time (Joules per second) (E/t) which has the unit of Watts.
Electrical heaters and motors are rated in Watts, to tell you the rate of heating, drilling, cutting etc.
Power in vehicles is very relevant, of course, but they tend to operate at variable speeds and acceleration so the actual output power of your engine can be anything from zero to (occasionally) maximum.
At the end of a job, the total Energy delivered will be the sum of the Pt for all the intervals of time at different output P values. That's what your Electrical Energy Meter calculates when it charges you for the Energy used or it will relate to how much furl you need to put in the fuel tank. (Naturally, the Efficiency of the engine / motor needs to be taken into account.
It is a good idea to get used to the Maths of the business; it is not a difficult bit of mathematical Physics,
 
  • Like
Likes   Reactions: Fabian901
  • #15
I see! Thanks a lot for the help everyone :)
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
613
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
4K
  • · Replies 17 ·
Replies
17
Views
952
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
5K
  • · Replies 29 ·
Replies
29
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
3K
  • · Replies 11 ·
Replies
11
Views
6K