Precalc absolute value fuction

Click For Summary
SUMMARY

The discussion focuses on solving the equation |X-16| - |X-2| under the condition X<7. The correct approach involves recognizing the behavior of the absolute value functions at critical points, specifically at X=2 and X=16. For the interval 2 ≤ X < 7, the equation simplifies to 18 - 2X, while for X < 2, it results in a constant value of 14. The analysis confirms that the absolute values can be eliminated by substituting their definitions based on the value of X.

PREREQUISITES
  • Understanding of absolute value functions
  • Knowledge of inequalities and critical points
  • Basic algebraic manipulation skills
  • Familiarity with piecewise functions
NEXT STEPS
  • Study the properties of absolute value equations
  • Learn about piecewise function definitions and applications
  • Explore solving inequalities involving absolute values
  • Practice with similar algebraic expressions and their transformations
USEFUL FOR

Students studying precalculus, educators teaching algebra, and anyone seeking to improve their understanding of absolute value functions and inequalities.

gawman
Detemine |X-16| - |X-2| = ? given X<7
 
Mathematics news on Phys.org
Boy, it has been ages since I have seen/solved one of these.

I am probably mistaken, but I think this might be the way this is solved:

Detemine |X-16| - |X-2| = ? given X<7

0 < |x-16| - |x-2| < 7
I think at this step, the absolute value symbols disappear.
Then solve for x.

Anyone else, please feel free to correct me. It has been far too long for me to recall if this is the correct path to the solution.
 
Detemine |X-16| - |X-2| = ? given X<7

If X< 7 then X-16< 7-16= -9. Since this X-16 is negative,
|X-16|= -(X-16)= 16-X.
If X< 7, then X-2< 5. "< 5" may be EITHER positive or negative so this is not enough to tell us what |X-2| is. It should be clear that the "break" occurs at X= 2 (just as the "break" in |X-16| occurs at X= 16. If x< 7, then X must be less than 16).

If 2<= X< 7, then |X-16|= -(X-16)= 16- X (because X< 7< 16) and
|X-2|= X- 2 (X-2 is non-negative). |X-16|- |X-2|= 16-X- X+ 2= 18- 2X

If X<= 2, then |X-16|= 16- X as above and |X-2|= -(X-2)= 2-X (X- 2 is now negative). |X- 16|- |X-2|= 16-X-(2-X)= 16-X-2+X= 14.

|X-16|- |X-2|= 18- 2X if 2<= X< 7
= 14 if X< 2
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K