Pressure in fluids and Archimedes' principle

AI Thread Summary
The discussion centers on the effects of placing objects in a container of water regarding buoyant force and pressure. When a piece of wood is added, the volume of displaced water remains unchanged, resulting in constant pressure at the bottom of the container. Conversely, adding a metal object increases the volume of displaced water, thereby increasing the pressure at the bottom. The relationship between displaced water volume and water height is emphasized. Overall, the principles of buoyancy and pressure dynamics are affirmed.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
In following picture, a piece of wood and an empty container are floating on a container of water, and a metal object is at the bottom of the container. A) If we take the piece of wood that is on the surface of the water and put it in the container, how will the pressure at the bottom of the water container change? B) If we take that metal object from its place and put it in a container and the container remains floating, how does the pressure at the bottom of the water container change?
Relevant Equations
Archimedes' principle.
1688481668919.png

Hello.
A: If we put this piece of wood in the emty container, the volume of displaced water will not change (because Buoyant Force has not changed), so the pressure at the bottom of the water container doesn't change and it remains constant.
B: If we put the metal in the emty container, the volume of displaced water should increse (because Buoyant Force has increased), so the pressure at the bottom of the water container is increased.
The volume of displaced water is equivalent to change in water's height.

Am I wrong or not?!
 
Physics news on Phys.org
You are correct.
 
kuruman said:
You are correct.
Thanks again for your help.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...

Similar threads

Back
Top