Fermion Pressure at Room Temperature

Click For Summary
SUMMARY

The discussion focuses on calculating the mean energy and pressure of a system of N fermions with spin 1/2 at room temperature. The mean energy is derived using the formula <E> = (V/λ³) kT Σ (-1)^(l+1) z^l/l^(5/2), where z is the fugacity. The pressure is calculated as P = (2/3) (1/λ³) kT Σ (-1)^(l+1) z^l/l^(5/2). A critical error was identified in the calculation of the Gamma function, where Γ(5/2) was incorrectly assumed, leading to confusion regarding the factor of 2/3 in the pressure equation.

PREREQUISITES
  • Understanding of quantum statistics, specifically Fermi-Dirac statistics.
  • Familiarity with thermodynamic concepts such as pressure and mean energy.
  • Knowledge of the grand canonical ensemble and partition functions.
  • Proficiency in calculus, particularly in evaluating integrals and series.
NEXT STEPS
  • Study the derivation of the Fermi-Dirac distribution and its implications for fermionic systems.
  • Learn about the grand canonical ensemble and its application in statistical mechanics.
  • Explore the properties of the Gamma function and its role in statistical calculations.
  • Investigate the differences between fermions and bosons in statistical mechanics.
USEFUL FOR

Physicists, graduate students in quantum mechanics, and anyone studying statistical mechanics, particularly those interested in the behavior of fermionic systems at room temperature.

FranciscoSili
Messages
8
Reaction score
0

Homework Statement


I have to find the mean Energy $<E>$ and pressure of a system of N fermions with spin 1/2. The energy per particle is
\begin{equation}
\varepsilon = \frac{p^2}{2m}.
\endu{equation}

Homework Equations


The relevant equations are the degeneracy of the system:
\begin{equation}
g(\varepsilon)=\frac{4V (2m)^{3/2}\pi\varepsilon^{1/2}}{h^3}
\end{equation}
the mean occupation numbers of fermions
\begin{equation}
<n_\varepsilon>_{FD} = \frac{1}{e^{\beta(\varepsilon - \mu)}+1}
\end{equation}

The Attempt at a Solution


I calculated the mean energy doing
\begin{equation*}
\begin{split}
<E> &= \int_{0}^{\infty} \varepsilon g(\varepsilon) <n_\varepsilon>_{FD} d\varepsilon\\
&= \frac{4V (2mkT)^{3/2}\pi}{h^3} kT \int_{0}^{\infty} \frac{x^{3/2}}{z^{-1}e^x+1}dx.
\end{split}
\end{equation*},
and finally obtained:
\begin{equation}
<E> = \frac{V}{\lambda^3} kT \sum_{l=1}^{\infty} (-1)^{l+1}\frac{z^l}{l^{5/2}}
\end{equation}
where z is the fugacity.
\begin{equation*}
z=\exp{\beta \mu}
\end{equation*}Then I calculated the pressure making use of the grand partition function
\begin{equation}
\mathcal{Z} = \prod_\varepsilon 1+e^{-\beta(\varepsilon - \mu)}
\end{equation}
and doing this
\begin{equation*}
\begin{split}
\frac{PV}{kT} &= \ln \mathcal{Z} = \sum_{\varepsilon} \ln \left(1+e^{-\beta(\varepsilon - \mu)}\right)\\
&= \frac{4V (2m)^{3/2}\pi}{h^3} \int_{0}^{\infty} \varepsilon^{1/2} \ln \left(1+e^{-\beta(\varepsilon - \mu)}\right) d\varepsilon\\
&= \frac{4V (2m)^{3/2}\pi}{h^3} \left[\frac{2}{3} \varepsilon^{3/2} \ln \left(1+e^{-\beta(\varepsilon - \mu)}\right)\Big|_0^{\infty} - \frac{2\beta}{3} \int_{0}^{\infty} \frac{\varepsilon^{3/2}}{e^{\beta(\varepsilon - \mu)}+1} d\varepsilon \right]\\
&= \frac{8V (2m)^{3/2}\pi}{3h^3} \beta \int_{0}^{\infty} \frac{\varepsilon^{3/2}}{e^{\beta(\varepsilon - \mu)}+1} d\varepsilon
\end{split}
\end{equation*}
I finally obtained that the pressure is
\begin{equation}
P = \frac{2}{3} \frac{1}{\lambda^3} kT \sum_{l=1}^{\infty} (-1)^{l+1}\frac{z^l}{l^{5/2}}
\end{equation}
Now, the problem is that, if I want to obtain the pressure at room temperature, I calculate using the canonical ensemble the chemical potential, and approximate the series
\begin{equation}
\mu = \frac{1}{\beta} \ln \left(\frac{N \lambda^3}{V}\right),
\end{equation}
\begin{equation}
\sum_{l=1}^{\infty} (-1)^{l+1}\frac{z^l}{l^{5/2}} \approx z
\end{equation}
I get that the pressure is:
\begin{equation}
P = \frac {2} {3} \frac{NkT}{V}
\end{equation}
That result really bothers me because of that factor of 2/3. I did the same process to obtain the pressure and energy for bosons and obtained the correct result.
I thought that the factor may arise because I am considering electrons and the spin may do a contibution.

If anyone could help me with this it would be very appreciated!
Thank you
 
Physics news on Phys.org
stevendaryl said:
They go through the calculation in this paper:

https://www.phas.ubc.ca/~berciu/TEACHING/PHYS455/LECTURES/FILES/fermionsn.pdf

They get ##PV = \frac{2}{3} U##, not ##PV = \frac{2}{3} kT## (where ##U## is the energy).
I found my mistake. I was assuming that
\begin{equation*}
\Gamma(5/2)=\frac{\pi^{1/2}{4}
\end{equation*}
when it actually is:
\begin{equation*}
\Gamma(5/2)=\frac{3\pi^{1/2}{4}.
\end{equation*}
Then everything was correct.
Thank you for your response, and I'm going to keep that paper. It's really interesting.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
767
Replies
58
Views
6K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
3K