B Principle of Relativity: Classical Physics Example

abdossamad2003
Messages
68
Reaction score
4
hi everyone
"The principle of relativity: The laws of physics are the same in all inertial reference frames."
Is in classical physics The laws of physics aren't the same in all inertial reference frames!? Give an example in classical physics

Thanks
 
Physics news on Phys.org
The principle of relativity holds in all systems of physics since Galileo. Aristotle would have disagreed with it, arguing that (in modern terms) the rest frame of the Earth's surface is special in some sense.

Einstein probably felt the need to state the principle explicitly since dropping it was one approach you could consider to resolve the mismatch between Maxwell and Newton. Relativity, of course, resolves the mismatch without abandoning the principle of relativity.
 
  • Like
Likes topsquark and russ_watters
abdossamad2003 said:
Is in classical physics The laws of physics aren't the same in all inertial reference frames!?
No. The principle of relativity in this form was actually first enunciated by Galileo, and Newtonian mechanics is bulit on it. The difference between Newtonian mechanics and special relativity is the specific form of the transformation between different inertial frames: in Newtonian mechanics it is the Galilean transformation, in SR it is the Lorentz transformation.
 
First of all, I guess with "classical physics" you mean "Newtonian physics". Of course, in Newtonian physics the special principle of relativity must also hold. In both Newtonian physics and special relativistic physics thus Newton's 1st Law is valid, i.e., there exists an "inertial frame of reference", in which a point mass moves with constant velocity, if it's not interacting with anything.

The difference comes with Einstein's additional postulate for special relativity, i.e., that the phase velocity of electromagnetic waves in a vacuum (in short "the speed of light") is independent of the relative motion between source and detector.

Together with the additional assumptions about the symmetries of space and time you find out that you either get the Galilei transformations between two inertial reference frames,
$$t'=t, \quad \vec{x}'=\vec{x}-\vec{v} t, \quad \vec{v}=\text{const}$$
or the Lorentz transformations (making the direction of the relative velocity that in the ##x##-direction),
$$c t'=\gamma (c t-\beta x), \quad \beta=v/c, \quad \gamma=1/\sqrt{1-\beta^2},$$
$$x' = \gamma (x-\beta c t).$$
The Galilei transformations of course belong to Newtonian and the Lorentz transformations to special relativistic physics, and in special relativity, the speed of light, ##c##, is a "limiting speed", i.e., nothing can move faster than the speed of light within an inertial frame of reference. There's no such limiting speed in Newtonian physics, of course.
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Back
Top