Probability/Counting Rules Question

  • Thread starter Thread starter skhan
  • Start date Start date
  • Tags Tags
    Rules
skhan
Messages
2
Reaction score
0
Hello:
I was having trouble answering these two probability questions, so assistance from anyone would be much appreciated.

A project director runs a staff consisting of 6 scientists and 3 lab technicians. Three new projects have to be worked on and the director decides to assign 4 of her staff to the first project, 3 to the second project and 2 to the third project. In how many ways can this be accomplished if:

a) Of the 4 people assigned to the first project, at least 3 are scientists? ANS: 750

So I tried this problem, and i don't get 750 which is pretty frustrating...
Heres what I did:

Let's say there are 3 scientists on the 1st project:

1st group 2nd group 3rd group
------------ ----------- ------------

3S 1LT 1S 2LT 2S 0LT
3S 1LT 2S 1LT 1S 1LT
3S 1LT 3S 0LT 0S 2LT

Let's say there are 4 scientists on 1st project:

1st group 2nd group 3rd group
---------- --------- ---------
4S 0LT 2S 1LT 0S 2LT
4S 0LT 1S 2LT 1S 1LT

Counting up all these (omitting combinations which equal 1):

C(6,3)C(3,1)C(3,1)+C(6,3)C(3,1)C(3,2)C(2,1)+
C(6,3)C(3,1)+C(6,4)C(3,1)+C(6,4)C(2,1)C(3,2)
=180+360+60+45+90=735

...help :confused:
 
Physics news on Phys.org
Looks to me like you omitted one case for when there are 4 scientists on the 1st project. There isn't any condition that says there has to be a scientist on the 2nd project, is there?

By the way, you said you had trouble with two questions?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top