LagrangeEuler
- 711
- 22
If P(q_1,q_2) is probability distribution for two random variables q_1,q_2, let us define
q=\frac{q_1+q_2}{2}
Probability distribution for q is then
P'(q)=\int dq_1dq_2\delta (q-\frac{1}{2}(q_1+q_2)P(q_1,q_2)=\langle \delta (q-\frac{1}{2}(q_1+q_2) \rangle_P
Why?
What is label \langle \cdot \rangle_P exactly?
q=\frac{q_1+q_2}{2}
Probability distribution for q is then
P'(q)=\int dq_1dq_2\delta (q-\frac{1}{2}(q_1+q_2)P(q_1,q_2)=\langle \delta (q-\frac{1}{2}(q_1+q_2) \rangle_P
Why?
What is label \langle \cdot \rangle_P exactly?