Graduate Problem in Understanding notation of distributional section

  • Thread starter Thread starter amilton
  • Start date Start date
  • Tags Tags
    Notation Section
Click For Summary
The discussion clarifies the notation used in Urs Schreiber's post regarding distributional sections. Specifically, it explains that while definition 7.9 denotes the space of distributional sections of the dual vector bundle \(E^*\) as \(\Gamma_{\Sigma}^{\prime}(E^*)\), proposition 7.10 focuses on distributional sections of the original bundle \(E\). The mapping \(u_{()}\) is correctly identified as a functional from sections of \(E^*\) to distributional sections of \(E\), which may cause confusion due to the differing notations. The emphasis is on understanding that the distributional sections in proposition 7.10 pertain to \(E\), not \(E^*\). This distinction is crucial for grasping the underlying concepts in the context of smooth vector bundles over Minkowski spacetime.
amilton
Messages
5
Reaction score
0
In this post [Observables][1] By Urs Schreiber he denotes the space of distributional sections in defenition 7.9 by ##\Gamma_{\Sigma}^{\prime}\left(E^*\right) ##

That is if ##u \in \Gamma_{\Sigma}^{\prime}\left(E^*\right)## than ##u## is a linear functional that takes as argument sections of a vector bundle ##E##

In the same post he has proposition 7.10

> Let ##E \stackrel{f b}{\rightarrow} \Sigma## be a smooth vector bundle over Minkowski spacetime and let ##s \in\{c p, \pm c p, s c p, t c p\}## be any of the support conditions from def. 2.36.
Then the operation of regarding a compactly supported smooth section of the dual vector bundle as a functional on sections with this support property is a dense subspace inclusion into the topological vector space of distributional sections from def. 7.9:
$$
\begin{array}{ccc}
\Gamma_{\Sigma, \mathrm{cp}}\left(E^*\right) & \stackrel{u_{(-)}}{\longrightarrow} & \Gamma_{\Sigma, S}^{\prime}(E) \\
b & \mapsto & \left(\Phi \mapsto \int_{\Sigma} b(x) \cdot \Phi(x) \operatorname{dvol}_{\Sigma}(x)\right)
\end{array}
$$

In my understanding ##u_{()}## is a map from the space of sections of the dual bundle to the space of the distributional section .Why ##u_{()} \in \Gamma_{\Sigma, s}^{\prime}(E)## ? Shouldn't we have ## u_{()} \in \Gamma_{\Sigma, s}^{\prime}(E^*)## [1]: https://www.physicsforums.com/insights/newideaofquantumfieldtheory-observables/
 
Last edited by a moderator:
Physics news on Phys.org


It is correct that in proposition 7.10, ##u_{()}## is a map from the space of sections of the dual bundle ##E^*## to the space of distributional sections ##\Gamma_{\Sigma, s}^{\prime}(E)##. This can be seen from the notation ##\Gamma_{\Sigma, s}^{\prime}(E)## which indicates that we are considering distributional sections of ##E##, not ##E^*##.

The notation may be confusing because in definition 7.9, ##\Gamma_{\Sigma}^{\prime}\left(E^*\right)## is used to denote the space of distributional sections of ##E^*##. However, in this case, the notation is being used to emphasize that the distributional sections are taken with respect to the dual bundle.

Therefore, in proposition 7.10, we are considering distributional sections of the original bundle ##E##, not its dual ##E^*##. This is why ##u_{()}## is an element of ##\Gamma_{\Sigma, s}^{\prime}(E)##, not ##\Gamma_{\Sigma, s}^{\prime}(E^*)##.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
2K
Replies
0
Views
829
  • · Replies 1 ·
Replies
1
Views
2K