Problem in Understanding notation of distributional section

  • Context: Graduate 
  • Thread starter Thread starter amilton
  • Start date Start date
  • Tags Tags
    Notation Section
Click For Summary
SUMMARY

The discussion clarifies the notation used in Urs Schreiber's post regarding distributional sections, specifically in definition 7.9 and proposition 7.10. It establishes that the notation ##\Gamma_{\Sigma, s}^{\prime}(E)## refers to distributional sections of the vector bundle ##E##, while ##\Gamma_{\Sigma}^{\prime}(E^*)## denotes those of the dual bundle ##E^*##. The confusion arises from the duality concept, but it is confirmed that the mapping ##u_{()}## is correctly identified as an element of ##\Gamma_{\Sigma, s}^{\prime}(E)##, not ##\Gamma_{\Sigma, s}^{\prime}(E^*)##.

PREREQUISITES
  • Understanding of vector bundles and their duals
  • Familiarity with distribution theory in mathematical physics
  • Knowledge of smooth manifolds and Minkowski spacetime
  • Proficiency in functional analysis concepts
NEXT STEPS
  • Study the properties of distributional sections in vector bundles
  • Learn about the implications of dual vector bundles in functional analysis
  • Explore the concept of compactly supported sections in the context of distribution theory
  • Investigate the role of support conditions in the analysis of smooth sections
USEFUL FOR

Mathematicians, theoretical physicists, and graduate students specializing in differential geometry, quantum field theory, and functional analysis will benefit from this discussion.

amilton
Messages
5
Reaction score
0
In this post [Observables][1] By Urs Schreiber he denotes the space of distributional sections in defenition 7.9 by ##\Gamma_{\Sigma}^{\prime}\left(E^*\right) ##

That is if ##u \in \Gamma_{\Sigma}^{\prime}\left(E^*\right)## than ##u## is a linear functional that takes as argument sections of a vector bundle ##E##

In the same post he has proposition 7.10

> Let ##E \stackrel{f b}{\rightarrow} \Sigma## be a smooth vector bundle over Minkowski spacetime and let ##s \in\{c p, \pm c p, s c p, t c p\}## be any of the support conditions from def. 2.36.
Then the operation of regarding a compactly supported smooth section of the dual vector bundle as a functional on sections with this support property is a dense subspace inclusion into the topological vector space of distributional sections from def. 7.9:
$$
\begin{array}{ccc}
\Gamma_{\Sigma, \mathrm{cp}}\left(E^*\right) & \stackrel{u_{(-)}}{\longrightarrow} & \Gamma_{\Sigma, S}^{\prime}(E) \\
b & \mapsto & \left(\Phi \mapsto \int_{\Sigma} b(x) \cdot \Phi(x) \operatorname{dvol}_{\Sigma}(x)\right)
\end{array}
$$

In my understanding ##u_{()}## is a map from the space of sections of the dual bundle to the space of the distributional section .Why ##u_{()} \in \Gamma_{\Sigma, s}^{\prime}(E)## ? Shouldn't we have ## u_{()} \in \Gamma_{\Sigma, s}^{\prime}(E^*)## [1]: https://www.physicsforums.com/insights/newideaofquantumfieldtheory-observables/
 
Last edited by a moderator:
Physics news on Phys.org


It is correct that in proposition 7.10, ##u_{()}## is a map from the space of sections of the dual bundle ##E^*## to the space of distributional sections ##\Gamma_{\Sigma, s}^{\prime}(E)##. This can be seen from the notation ##\Gamma_{\Sigma, s}^{\prime}(E)## which indicates that we are considering distributional sections of ##E##, not ##E^*##.

The notation may be confusing because in definition 7.9, ##\Gamma_{\Sigma}^{\prime}\left(E^*\right)## is used to denote the space of distributional sections of ##E^*##. However, in this case, the notation is being used to emphasize that the distributional sections are taken with respect to the dual bundle.

Therefore, in proposition 7.10, we are considering distributional sections of the original bundle ##E##, not its dual ##E^*##. This is why ##u_{()}## is an element of ##\Gamma_{\Sigma, s}^{\prime}(E)##, not ##\Gamma_{\Sigma, s}^{\prime}(E^*)##.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
5
Views
3K