Problem using big O notation

  • MHB
  • Thread starter rayari
  • Start date
  • #1
rayari
1
0
Functions defines on the plane $\mathbb{R}^2$ or open subsets , using $X=(x_1,x_2)\in\mathbb{R}^2$ asthe coordinates
Find all $\alpha \in \mathbb{R}$ such that $(\ln x_1)(x_2^2+x_2)=O(||X||^{\alpha})$ as $||X||\to 0$.
and $|X|| \to \infty$ (note that $x_1>0)$
 

Answers and Replies

  • #2
Joppy
MHB
287
22
It might help to be clear on notation. For instance I assume $||X||^\alpha = (x_1^2 + x_2^2)^{\alpha/2}$. In any case this is interesting, anyone got any ideas?
 

Suggested for: Problem using big O notation

  • Last Post
Replies
2
Views
473
  • Last Post
Replies
4
Views
582
  • Last Post
Replies
6
Views
1K
Replies
12
Views
175
Replies
1
Views
480
Replies
3
Views
618
Replies
5
Views
815
Replies
1
Views
753
Replies
1
Views
824
Top