Problem with the physics behind charged, isolated conductors

AI Thread Summary
The discussion centers on the behavior of charged, isolated conductors, particularly focusing on a neutral copper sphere from which electrons are removed. Gauss' law suggests that excess charge resides on the surface, leading to confusion about how removing electrons affects the charge distribution within the conductor. When electrons are taken away, the remaining positively charged ions are left on the surface, preventing further positive charging once the supply of conduction electrons is exhausted. The arrangement of conduction electrons ensures that the electric field inside the conductor remains zero, which explains why the charge distribution stabilizes on the surface. Ultimately, the movement of electrons is governed by the need to maintain this electric field condition, rather than merely seeking distance from one another.
J Goodrich
Messages
17
Reaction score
0
There is something that I do not understand completely with regards to charged, isolated conductors.

Gauss' law implies the following:
"If an excess charge is placed on an isolated conductor, that amount of charge will move entirely to the surface of the conductor. None of the excess charge will be found within the body of the conductor."

So let us suppose that we have a solid, spherical conductor made up of copper.

The previous statement says that if you were to add any quantity of negative charge, say n electrons, that they will disperse to the surface of the material in an attempt to be as distant from one another due to electrostatic repulsion. This makes sense to me, because in a conductive metal the free electrons are allowed to move about. Throughout the volume of the metal there will be the normal amount of electrons associated with the protons in the copper molecules, and the n added electrons will be dispersed across the surface area of the sphere.

However, I don't see how the converse is true: suppose that we begin with a neutral sphere of copper and then remove n electrons. Gauss' law says that there should be no excess charge will be within the conductor. The protons are fixed in place, though, there are no free protons to move about to the surface; the net charge is induced by our removal of mobile electrons, rather than the addition of protons. Therefore, in order for our theory via Gauss' law to hold, that means that there are n less electrons on the surface and still the required amount of electrons within the sphere to make the inner neutral.

My problem with this is that the electrons within the metal, the conductive electrons, are still free to move about and because of their repulsion should still want to be as far apart as possible. How/why do the electrons not act like this; why, in this scenario of electrons removed, does the entire volume of the sphere stay uniformly charged?
 
Physics news on Phys.org
The electrons are also attracted to the protons. If there are more protons than electrons, the attractive force will be bigger
 
I think this may occur because: If you consider a local positive charge in the center of the volume, it has free electrons around it in every direction that will try to move to nullify the charge. Whereas if you have a local positive charge on the boundary of the volume, there are less free electrons available to move in and nullify that charge. Hence the electrons tend to be drawn inwards and the charge imbalance exists concentrated on the surface.
 
J Goodrich said:
suppose that we begin with a neutral sphere of copper and then remove n electrons. Gauss' law says that there should be no excess charge will be within the conductor. The protons are fixed in place, though, there are no free protons to move about to the surface; the net charge is induced by our removal of mobile electrons, rather than the addition of protons. Therefore, in order for our theory via Gauss' law to hold, that means that there are n less electrons on the surface and still the required amount of electrons within the sphere to make the inner neutral.

My problem with this is that the electrons within the metal, the conductive electrons, are still free to move about and because of their repulsion should still want to be as far apart as possible. How/why do the electrons not act like this; why, in this scenario of electrons removed, does the entire volume of the sphere stay uniformly charged?

When electrons are removed from the conducting sphere, they are nominally all removed from surface atoms, leaving positively charged copper ions on the surface . When this supply of electrons has been exhausted, no further "positive charging" of the sphere is possible. The best way to understand the behavior of conductors, more generally, is that Ohm's law ensures that the conduction electrons/positive ions are always arranged in such a way that the electric field at interior points is zero. It isn't true that conduction electrons move to the sphere's surface in order to get as far away from one another as possible. Consider an uncharged sphere. The conduction electrons are evenly distributed within the sphere. If you could add extra electrons to a point inside the sphere (say via an insulated wire), they would engender an electric field at points within the sphere, and conduction electrons at such points will move such as to drive the electric field at interior points to zero. By Gauss' law, this indicates that they must all reside on the surface (of any conductor) once electrostatic conditions have been attained.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top