Projectile motion of two balls off a cliff

Click For Summary

Homework Help Overview

The discussion revolves around the projectile motion of two balls projected from a cliff, one at an angle above the horizontal and the other below. Participants are exploring how to determine the individual ranges of these projectiles and the difference between them.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants are attempting to derive the range of each projectile using kinematic equations but are encountering issues, particularly with obtaining a zero range. Some are questioning the validity of their diagrams and kinematic models.

Discussion Status

There is an ongoing exploration of the problem, with participants offering various approaches to understand the time-of-flight and range calculations for both projectiles. Some guidance has been provided regarding the importance of distinguishing between the upward and downward throws and the implications of their initial velocity components.

Contextual Notes

Participants note the need to clarify the problem's requirements, specifically that the focus is on the difference in ranges rather than calculating each range individually. There is also mention of potential confusion arising from using different symbols for the same quantities.

tellmesomething
Messages
449
Reaction score
59
Homework Statement
1. Two balls are projected from the top of a cliff with equal initial speed u. One starts at angle θ
above the horizontal while the other starts at angle θ below. Difference in their ranges is
Relevant Equations
Non
Screenshot_2024-11-23-17-39-07-609_com.miui.notes.jpg

This is just the object which is thrown theta angle below rhe horizontal. I fail to understand how to get the individual range of this. I tried but I am getting zero, can someone point out what is wrong in my method

So ##R=ucos\theta*t ##
##\frac{h}{R}=tan\theta##
Therefore ##h=Rtan\theta##
We know that ##H=usin\theta*t+\frac{1}{2}gt^2##
So ##Rtan\theta=\frac{R}{ucos\theta}[usin\theta +\frac{1}{2}g\frac{R}{ucos\theta}]##
As you can see we get
##usin\theta=usin\theta+\frac{1}{2}g\frac{R}{ucos\theta} ##

So R=0

What is wrong here
 
Physics news on Phys.org
tellmesomething said:
Homework Statement: 1. Two balls are projected from the top of a cliff with equal initial speed u. One starts at angle θ
above the horizontal while the other starts at angle θ below. Difference in their ranges is
Relevant Equations: Non

View attachment 353821
This is just the object which is thrown theta angle below rhe horizontal. I fail to understand how to get the individual range of this. I tried but I am getting zero, can someone point out what is wrong in my method

So ##R=ucos\theta*t ##
##\frac{h}{R}=tan\theta##
Therefore ##h=Rtan\theta##
We know that ##H=usin\theta*t+\frac{1}{2}gt^2##
So ##Rtan\theta=\frac{R}{ucos\theta}[usin\theta +\frac{1}{2}g\frac{R}{ucos\theta}]##
As you can see we get
##usin\theta=usin\theta+\frac{1}{2}g\frac{R}{ucos\theta} ##

So R=0

What is wrong here
The projectile moves in a parabola. The angle ##\theta## is only the initial angle.
 
  • Like
Likes   Reactions: Steve4Physics and erobz
tellmesomething said:
Homework Statement: 1. Two balls are projected from the top of a cliff with equal initial speed u. One starts at angle θ
above the horizontal while the other starts at angle θ below. Difference in their ranges is
Relevant Equations: Non

View attachment 353821
This is just the object which is thrown theta angle below rhe horizontal. I fail to understand how to get the individual range of this. I tried but I am getting zero, can someone point out what is wrong in my method

So ##R=ucos\theta*t ##
##\frac{h}{R}=tan\theta##
Therefore ##h=Rtan\theta##
We know that ##H=usin\theta*t+\frac{1}{2}gt^2##
So ##Rtan\theta=\frac{R}{ucos\theta}[usin\theta +\frac{1}{2}g\frac{R}{ucos\theta}]##
As you can see we get
##usin\theta=usin\theta+\frac{1}{2}g\frac{R}{ucos\theta} ##

So R=0

What is wrong here
Your diagram doesn't seem to make sense for the problems neither do your kinematic models?

I would start by writing the range of each projectile after I drew two diagrams for comparison. Begin with the projectile that is projected above horizontal. Solve the system of kinematic equations for it, what do you get for its range?

P.S. after I did that, I realized I could satisfy both scenarios with the same equation by seeing the sign properties of the trig functions with regards to ##\theta## and ## -\theta## arguments.
 
Last edited:
@tellmesomething, avoid using different symbols (h and H) for the same quantity.

It looks like you are sticking numbers into equations and doing the algebra without fully understanding the physics – dangerous! Here’s a possible approach:

1) For the upwards throw, note that the initial vertical component of velocity is usin⁡θ upwards. And for the downwards throw, it is usin⁡θ downwards.

2) Use the above to find the time-of-flight for each throw. The times are different. (The times aren’t affected by the horizontal component of motion.)

3) The horizontal component of velocity for both throws is ucos⁡θ so, knowing the times, you can now find the two ranges.

Edit: It's worth noting that there is a quick method to solve the problem. This depends on the fact that the time-difference between the throws can easily be found - if you can spot the 'trick'.
 
Last edited:
  • Like
Likes   Reactions: Lnewqban and erobz
tellmesomething said:
...
This is just the object which is thrown theta angle below rhe horizontal. I fail to understand how to get the individual range of this.
But you are not asked to calculate the range of the downwards thrown ball; the problem asks for the difference in the ranges of both balls.

If you draw an imaginary horizontal line at the same altitude of the common point of throw (Two balls are projected from the top of a cliff with equal initial speed u), at what angle and velocity the ball that was thrown upwards would cross that line in its way down? (no calculation is needed to answer that question).
 
  • Like
Likes   Reactions: haruspex and Steve4Physics

Similar threads

Replies
4
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 38 ·
2
Replies
38
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
Replies
1
Views
1K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K