MHB Projection Matrix Calculation for Vectors a_k: P_6P_5P_4P_3P_2P_1a_0

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Projection
Click For Summary
The discussion focuses on calculating the product of projection matrices \( P_6P_5P_4P_3P_2P_1 \) applied to the vector \( a_0 \), where \( a_k \) are defined as unit vectors based on angles of \( \frac{k\pi}{3} \). The projection matrix elements are confirmed to be \( P_{ij} = a_{k,i} a_{k,j} \), leading to specific matrix forms for each \( P_k \). The final calculation shows that the result of the matrix product applied to \( a_0 \) yields \( \begin{pmatrix} \frac{1}{64} \\ 0 \end{pmatrix} \). An alternative approach using the dot product of the unit vectors is also discussed, confirming the same result.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the vectors $\displaystyle{a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}, \ k=0, 1, \ldots , 6}$. Let $P_k$ be the projection matrix onto $a_k$.
Calculate $P_6P_5P_4P_3P_2P_1a_0$. Are the elements of the projection matrix defined as $P_{ij}=\frac{a_ij_j}{a\cdot a}$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We have the vectors $\displaystyle{a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}, \ k=0, 1, \ldots , 6}$. Let $P_k$ be the projection matrix onto $a_k$.
Calculate $P_6P_5P_4P_3P_2P_1a_0$. Are the elements of the projection matrix defined as $P_{ij}=\frac{a_ij_j}{a\cdot a}$ ?

Hey mathmari!

What do you mean by $a_ij_j$? (Wondering)

Btw, $a$ is of unit length isn't it? So $a\cdot a=1$. (Thinking)

The projection onto $a_k$ is:
$$P_k(x) = (x\cdot a_k)a_k = a_k(a_k^T x)=(a_k a_k^T)x$$
So the elements of the matrix $P_k$ are $(P_k)_{ij} = a_{k,i} a_{k,j}$.
Oh, is that what you meant? (Wondering)
 
Klaas van Aarsen said:
What do you mean by $a_ij_j$? (Wondering)

Btw, $a$ is of unit length isn't it? So $a\cdot a=1$. (Thinking)

The projection onto $a_k$ is:
$$P_k(x) = (x\cdot a_k)a_k = a_k(a_k^T x)=(a_k a_k^T)x$$
So the elements of the matrix $P_k$ are $(P_k)_{ij} = a_{k,i} a_{k,j}$.
Oh, is that what you meant? (Wondering)

Yes, that is what I meant, I didn't use the correct symbols. (Blush) So we get the following:
\begin{align*}&P_1=\begin{pmatrix}\cos^2\frac{\pi}{3} & \sin\frac{\pi}{3}\cos\frac{\pi}{3} \\ \sin\frac{\pi}{3}\cos\frac{\pi}{3} & \sin^2\frac{\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_2=\begin{pmatrix}\cos^2\frac{2\pi}{3} & \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} \\ \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} & \sin^2\frac{2\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_3=\begin{pmatrix}\cos^2\frac{3\pi}{3} & \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} \\ \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} & \sin^2\frac{3\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\pi & \sin\pi\cos\pi \\ \sin\pi\cos\pi & \sin^2\pi \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix} \\ & P_4=\begin{pmatrix}\cos^2\frac{4\pi}{3} & \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} \\ \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} & \sin^2\frac{4\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_5=\begin{pmatrix}\cos^2\frac{5\pi}{3} & \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} \\ \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} & \sin^2\frac{5\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_6=\begin{pmatrix}\cos^2\frac{6\pi}{3} & \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} \\ \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} & \sin^2\frac{6\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\left (2\pi\right ) & \sin\left (2\pi\right )\cos\left (2\pi\right ) \\ \sin\left (2\pi\right )\cos\left (2\pi\right ) & \sin^2\left (2\pi\right ) \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\end{align*}

Therefore the result that we are looking for is:
\begin{align*}P_6P_5P_4P_3P_2P_1a_0&=\left (\left (\left (\left (\left (P_6P_5\right )P_4\right )P_3\right )P_2\right )P_1\right )a_0 \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\cos 0 \\ \sin 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & -\frac{\sqrt{3}}{8} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{32} & \frac{\sqrt{3}}{32} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} & \frac{\sqrt{3}}{64} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} \\ 0\end{pmatrix}\end{align*} (Wondering)
 
mathmari said:
So we get the following:
\begin{align*}&P_1=\begin{pmatrix}\cos^2\frac{\pi}{3} & \sin\frac{\pi}{3}\cos\frac{\pi}{3} \\ \sin\frac{\pi}{3}\cos\frac{\pi}{3} & \sin^2\frac{\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_2=\begin{pmatrix}\cos^2\frac{2\pi}{3} & \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} \\ \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} & \sin^2\frac{2\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_3=\begin{pmatrix}\cos^2\frac{3\pi}{3} & \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} \\ \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} & \sin^2\frac{3\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\pi & \sin\pi\cos\pi \\ \sin\pi\cos\pi & \sin^2\pi \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix} \\ & P_4=\begin{pmatrix}\cos^2\frac{4\pi}{3} & \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} \\ \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} & \sin^2\frac{4\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_5=\begin{pmatrix}\cos^2\frac{5\pi}{3} & \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} \\ \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} & \sin^2\frac{5\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_6=\begin{pmatrix}\cos^2\frac{6\pi}{3} & \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} \\ \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} & \sin^2\frac{6\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\left (2\pi\right ) & \sin\left (2\pi\right )\cos\left (2\pi\right ) \\ \sin\left (2\pi\right )\cos\left (2\pi\right ) & \sin^2\left (2\pi\right ) \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\end{align*}

Therefore the result that we are looking for is:
\begin{align*}P_6P_5P_4P_3P_2P_1a_0&=\left (\left (\left (\left (\left (P_6P_5\right )P_4\right )P_3\right )P_2\right )P_1\right )a_0 \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\cos 0 \\ \sin 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & -\frac{\sqrt{3}}{8} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{32} & \frac{\sqrt{3}}{32} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} & \frac{\sqrt{3}}{64} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} \\ 0\end{pmatrix}\end{align*}

Looks all correct to me! (Nod)

Just a different possible approach:
$$P_6P_5P_4P_3P_2P_1a_0
= (a_6a_6^T)\ldots(a_2a_2^T)(a_1a_1^T)a_0
=a_6(a_6^Ta_5)\ldots(a_2^Ta_1)(a_1^Ta_0)
$$
Each pair of consecutive $a_k$ vectors corresponds to two unit vectors with an angle of $\frac\pi 3$ between them.
Their dot product is therefore $\cos\frac\pi 3$.
Thus:
$$P_6P_5P_4P_3P_2P_1a_0 = a_6(\cos\frac\pi 3)^6=\binom 10\cdot \frac 1{2^6} = \binom{\frac1{64}}0$$
 
Klaas van Aarsen said:
Looks all correct to me! (Nod)

Just a different possible approach:
$$P_6P_5P_4P_3P_2P_1a_0
= (a_6a_6^T)\ldots(a_2a_2^T)(a_1a_1^T)a_0
=a_6(a_6^Ta_5)\ldots(a_2^Ta_1)(a_1^Ta_0)
$$
Each pair of consecutive $a_k$ vectors corresponds to two unit vectors with an angle of $\frac\pi 3$ between them.
Their dot product is therefore $\cos\frac\pi 3$.
Thus:
$$P_6P_5P_4P_3P_2P_1a_0 = a_6(\cos\frac\pi 3)^6=\binom 10\cdot \frac 1{2^6} = \binom{\frac1{64}}0$$

Ahh ok! I see! Thanks a lot! (Blush)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
31
Views
3K
  • · Replies 52 ·
2
Replies
52
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K