Projection Matrix Calculation for Vectors a_k: P_6P_5P_4P_3P_2P_1a_0

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Projection
Click For Summary

Discussion Overview

The discussion revolves around the calculation of the product of projection matrices applied to a vector defined in terms of trigonometric functions. Participants explore the formulation of projection matrices and their application to specific vectors, examining the mathematical properties and implications of these projections.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants define the vectors as $\displaystyle{a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}}$ for $k=0, 1, \ldots , 6$ and discuss the projection matrix $P_k$ onto these vectors.
  • There is a question regarding the definition of the elements of the projection matrix, with one participant suggesting $P_{ij}=\frac{a_ij_j}{a\cdot a}$, while another clarifies that the correct form is $(P_k)_{ij} = a_{k,i} a_{k,j}$.
  • One participant asserts that the vectors $a_k$ are of unit length, leading to the conclusion that $a \cdot a = 1$.
  • Several participants provide explicit forms for the projection matrices $P_1$ through $P_6$, detailing their calculations and results.
  • There is a step-by-step calculation of the product $P_6P_5P_4P_3P_2P_1a_0$, with participants expressing their intermediate results and transformations throughout the process.

Areas of Agreement / Disagreement

Participants generally agree on the formulation of the projection matrices and their definitions, but there is no consensus on the final result of the product $P_6P_5P_4P_3P_2P_1a_0$, as the calculations are complex and involve multiple steps that have not been fully resolved.

Contextual Notes

Some calculations appear to depend on specific assumptions about the vectors and their properties, such as their unit length, which may not be universally applicable without further clarification. Additionally, the discussion includes unresolved mathematical steps that could affect the final outcome.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the vectors $\displaystyle{a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}, \ k=0, 1, \ldots , 6}$. Let $P_k$ be the projection matrix onto $a_k$.
Calculate $P_6P_5P_4P_3P_2P_1a_0$. Are the elements of the projection matrix defined as $P_{ij}=\frac{a_ij_j}{a\cdot a}$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We have the vectors $\displaystyle{a_k=\begin{pmatrix}\cos \frac{k\pi}{3} \\ \sin \frac{k\pi}{3}\end{pmatrix}, \ k=0, 1, \ldots , 6}$. Let $P_k$ be the projection matrix onto $a_k$.
Calculate $P_6P_5P_4P_3P_2P_1a_0$. Are the elements of the projection matrix defined as $P_{ij}=\frac{a_ij_j}{a\cdot a}$ ?

Hey mathmari!

What do you mean by $a_ij_j$? (Wondering)

Btw, $a$ is of unit length isn't it? So $a\cdot a=1$. (Thinking)

The projection onto $a_k$ is:
$$P_k(x) = (x\cdot a_k)a_k = a_k(a_k^T x)=(a_k a_k^T)x$$
So the elements of the matrix $P_k$ are $(P_k)_{ij} = a_{k,i} a_{k,j}$.
Oh, is that what you meant? (Wondering)
 
Klaas van Aarsen said:
What do you mean by $a_ij_j$? (Wondering)

Btw, $a$ is of unit length isn't it? So $a\cdot a=1$. (Thinking)

The projection onto $a_k$ is:
$$P_k(x) = (x\cdot a_k)a_k = a_k(a_k^T x)=(a_k a_k^T)x$$
So the elements of the matrix $P_k$ are $(P_k)_{ij} = a_{k,i} a_{k,j}$.
Oh, is that what you meant? (Wondering)

Yes, that is what I meant, I didn't use the correct symbols. (Blush) So we get the following:
\begin{align*}&P_1=\begin{pmatrix}\cos^2\frac{\pi}{3} & \sin\frac{\pi}{3}\cos\frac{\pi}{3} \\ \sin\frac{\pi}{3}\cos\frac{\pi}{3} & \sin^2\frac{\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_2=\begin{pmatrix}\cos^2\frac{2\pi}{3} & \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} \\ \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} & \sin^2\frac{2\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_3=\begin{pmatrix}\cos^2\frac{3\pi}{3} & \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} \\ \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} & \sin^2\frac{3\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\pi & \sin\pi\cos\pi \\ \sin\pi\cos\pi & \sin^2\pi \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix} \\ & P_4=\begin{pmatrix}\cos^2\frac{4\pi}{3} & \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} \\ \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} & \sin^2\frac{4\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_5=\begin{pmatrix}\cos^2\frac{5\pi}{3} & \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} \\ \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} & \sin^2\frac{5\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_6=\begin{pmatrix}\cos^2\frac{6\pi}{3} & \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} \\ \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} & \sin^2\frac{6\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\left (2\pi\right ) & \sin\left (2\pi\right )\cos\left (2\pi\right ) \\ \sin\left (2\pi\right )\cos\left (2\pi\right ) & \sin^2\left (2\pi\right ) \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\end{align*}

Therefore the result that we are looking for is:
\begin{align*}P_6P_5P_4P_3P_2P_1a_0&=\left (\left (\left (\left (\left (P_6P_5\right )P_4\right )P_3\right )P_2\right )P_1\right )a_0 \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\cos 0 \\ \sin 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & -\frac{\sqrt{3}}{8} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{32} & \frac{\sqrt{3}}{32} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} & \frac{\sqrt{3}}{64} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} \\ 0\end{pmatrix}\end{align*} (Wondering)
 
mathmari said:
So we get the following:
\begin{align*}&P_1=\begin{pmatrix}\cos^2\frac{\pi}{3} & \sin\frac{\pi}{3}\cos\frac{\pi}{3} \\ \sin\frac{\pi}{3}\cos\frac{\pi}{3} & \sin^2\frac{\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_2=\begin{pmatrix}\cos^2\frac{2\pi}{3} & \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} \\ \sin\frac{2\pi}{3}\cos\frac{2\pi}{3} & \sin^2\frac{2\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_3=\begin{pmatrix}\cos^2\frac{3\pi}{3} & \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} \\ \sin\frac{3\pi}{3}\cos\frac{3\pi}{3} & \sin^2\frac{3\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\pi & \sin\pi\cos\pi \\ \sin\pi\cos\pi & \sin^2\pi \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix} \\ & P_4=\begin{pmatrix}\cos^2\frac{4\pi}{3} & \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} \\ \sin\frac{4\pi}{3}\cos\frac{4\pi}{3} & \sin^2\frac{4\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_5=\begin{pmatrix}\cos^2\frac{5\pi}{3} & \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} \\ \sin\frac{5\pi}{3}\cos\frac{5\pi}{3} & \sin^2\frac{5\pi}{3} \end{pmatrix}=\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix} \\ & P_6=\begin{pmatrix}\cos^2\frac{6\pi}{3} & \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} \\ \sin\frac{6\pi}{3}\cos\frac{6\pi}{3} & \sin^2\frac{6\pi}{3} \end{pmatrix}=\begin{pmatrix}\cos^2\left (2\pi\right ) & \sin\left (2\pi\right )\cos\left (2\pi\right ) \\ \sin\left (2\pi\right )\cos\left (2\pi\right ) & \sin^2\left (2\pi\right ) \end{pmatrix}=\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\end{align*}

Therefore the result that we are looking for is:
\begin{align*}P_6P_5P_4P_3P_2P_1a_0&=\left (\left (\left (\left (\left (P_6P_5\right )P_4\right )P_3\right )P_2\right )P_1\right )a_0 \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\cos 0 \\ \sin 0\end{pmatrix} \\ & = \begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & -\frac{\sqrt{3}}{8} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{8} & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}-\frac{1}{32} & \frac{\sqrt{3}}{32} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}\frac{1}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{3}{4} \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} & \frac{\sqrt{3}}{64} \\ 0 & 0 \end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix}
\\ & = \begin{pmatrix}\frac{1}{64} \\ 0\end{pmatrix}\end{align*}

Looks all correct to me! (Nod)

Just a different possible approach:
$$P_6P_5P_4P_3P_2P_1a_0
= (a_6a_6^T)\ldots(a_2a_2^T)(a_1a_1^T)a_0
=a_6(a_6^Ta_5)\ldots(a_2^Ta_1)(a_1^Ta_0)
$$
Each pair of consecutive $a_k$ vectors corresponds to two unit vectors with an angle of $\frac\pi 3$ between them.
Their dot product is therefore $\cos\frac\pi 3$.
Thus:
$$P_6P_5P_4P_3P_2P_1a_0 = a_6(\cos\frac\pi 3)^6=\binom 10\cdot \frac 1{2^6} = \binom{\frac1{64}}0$$
 
Klaas van Aarsen said:
Looks all correct to me! (Nod)

Just a different possible approach:
$$P_6P_5P_4P_3P_2P_1a_0
= (a_6a_6^T)\ldots(a_2a_2^T)(a_1a_1^T)a_0
=a_6(a_6^Ta_5)\ldots(a_2^Ta_1)(a_1^Ta_0)
$$
Each pair of consecutive $a_k$ vectors corresponds to two unit vectors with an angle of $\frac\pi 3$ between them.
Their dot product is therefore $\cos\frac\pi 3$.
Thus:
$$P_6P_5P_4P_3P_2P_1a_0 = a_6(\cos\frac\pi 3)^6=\binom 10\cdot \frac 1{2^6} = \binom{\frac1{64}}0$$

Ahh ok! I see! Thanks a lot! (Blush)
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 52 ·
2
Replies
52
Views
4K
Replies
31
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K