alan123hk
- 817
- 450
When the voltage applied to the capacitor changes, the potential of the capacitor conductor and the potential of the surrounding space both change in the same proportion. Since the electric field strength is equal to the rate of change of the electric potential with respect to space, the electric field distribution on the conductor surface and the surrounding space also changes in the same proportion. Note that in the electrostatic case, the charge accumulates on the surface of the conductor, and the distribution of the charge density is proportional to the distribution of the electric field perpendicular to the surface of the conductor. That is to say, the change of the charge density distribution function just adds a simple proportionality constant, that is, the rate of change of the voltage applied to the capacitor.jkfjbw said:It seems that the arguments being presented rely on the charge distribution function increasing by the same constant factor that the total charge on one of the conductors is increased, but how do we know that the charge will distribute itself in that way? If this were an insulator you could simply specify that the new charge distribution function is equal to the old distribution function times the same constant factor as that relating the old charge quantity to the new charge quantity, but how do you know that same distribution also holds when the material is a conductor and the charges are free to move?
I think this logical inference process should not be wrong.
https://www.physicsforums.com/threa...es-not-depend-on-charge.1006758/#post-6536918
Last edited: