I Proof of the Division Algorithm

AI Thread Summary
The well ordering principle (WOP) states that every non-empty subset of positive integers has a least element. This principle is utilized in the proof of the division algorithm through the construction of non-negative integers. It is confirmed that WOP can also be applied to subsets of non-negative integers, as any subset containing zero will have zero as the least element. If the subset does not contain zero, it can be treated as a subset of positive integers, where WOP still applies. Thus, the application of WOP to non-negative integers is valid and not overly pedantic.
matqkks
Messages
280
Reaction score
5
TL;DR Summary
Application of well ordeing principle
In many books on number theory they define the well ordering principle (WOP) as:

Every non- empty subset of positive integers has a least element.

Then they use this in the proof of the division algorithm by constructing non-negative integers and applying WOP to this construction. Is it possible to apply the WOP to a subset of non-negative integers? Am I being too pedantic?
 
Physics news on Phys.org
Yes, you can apply it to the non-negative integers, by simply observing that if the subset contains zero then zero is the least element, otherwise the subset is also a subset of the positive integers and we can apply the principle that holds for them.
 
matqkks said:
Summary: Application of well ordeing principle

In many books on number theory they define the well ordering principle (WOP) as:

Every non- empty subset of positive integers has a least element.

Then they use this in the proof of the division algorithm by constructing non-negative integers and applying WOP to this construction. Is it possible to apply the WOP to a subset of non-negative integers? Am I being too pedantic?

Yes, well ordering principle applies to any subset of ##\mathbb{Z}## that is bounded below.
 
  • Like
Likes Klystron and nuuskur
Thanks it is so obvious as you have suggested.
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top