Proof of Transcendentals Uncountable

  • Thread starter Thread starter mynameisfunk
  • Start date Start date
  • Tags Tags
    Proof
mynameisfunk
Messages
122
Reaction score
0
Hi guys,
My question is to prove that the set of algebraic numbers is countable, then also prove that the set of transcendentals are uncountable. I have already proved the countability of the algebraics but now i do not know how to proceed. I believe it could be as simple as the complement of the algebraics in R is uncountable, but I am not sure if the complement of the algebraics numbers within R is the set of transcendentals or not. I was unable to find out if this is the case.. I saw that trascendtals could possibly be complex, but in any case, if transcendentals make up the rest of R, then I would be done.. Any help would be great.. If anyone needs to see my proof of algebraics being countable I will post if someone asks.
Thanks
 
Physics news on Phys.org
Isn't a trascendental number by definition any number which is not algebraic?
And that R - A is uncountable for any countable (or finite, of course) subset A is a general theorem.
So I think you are done.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top