LAHLH
- 405
- 2
Hi,
So if we have the Lagrange density for a massless scalar field: L=\sqrt{-g}\left(-\frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi-\frac{(n-2)}{4(n-1)} R\phi^2\right)
Then under a conformal transformation g_{\mu\nu}=\omega^{-2}\tilde{g_{\mu\nu}}, then the Ricci sclar goes to R=\omega^2\tilde{R}+2(n-1)\tilde{g^{\mu\nu}}\omega\left(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\omega\right)-n(n-1)\tilde{g^{\mu\nu}}\left(\tilde{\nabla}_{\mu}\omega\right)\left(\tilde{\nabla}_{\nu}\omega\right). We also have g^{\mu\nu}=\omega^2\tilde{g}^{\mu\nu} and \tilde{\nabla}_{\mu}\phi=\nabla_{\mu}\phi
Using all these suggests that,
\tilde{L}=\omega^{-1}\sqrt{-\tilde{g}}\left(-\frac{1}{2}\omega^2 \tilde{g}^{\mu\nu}\tilde{\nabla}_{\mu}\phi\tilde{\nabla}_{\nu}\phi-\frac{(n-2)}{4(n-1)} \left[\omega^2\tilde{R}+2(n-1)\tilde{g^{\mu\nu}}\omega\left(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\omega\right)-n(n-1)\tilde{g^{\mu\nu}}\left(\tilde{\nabla}_{\mu}\omega\right)\left(\tilde{\nabla}_{\nu}\omega\right)\right]\phi^2\right)
Which can be written as,
\tilde{L}=\sqrt{-\tilde{g}}\left(-\frac{1}{2}\omega \tilde{g}^{\mu\nu}\tilde{\nabla}_{\mu}\phi\tilde{\nabla}_{\nu}\phi-\frac{(n-2)}{4(n-1)} \omega\tilde{R}\phi^2-\frac{1}{2}(n-2)\tilde{g^{\mu\nu}}\left(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\omega\right)\phi^2+\frac{n}{4}(n-2)\omega^{-1}\tilde{g^{\mu\nu}}\left(\tilde{\nabla}_{\mu}\omega\right)\left(\tilde{\nabla}_{\nu}\omega\right)\phi^2\right)
The statement is that this conformal transformation leaves the scalar field theory invariant, so I was expecting to obtain the same form of the Lagrange density after applying the CT as I had before, but I can't see how the above reduces to this?
So if we have the Lagrange density for a massless scalar field: L=\sqrt{-g}\left(-\frac{1}{2}g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi-\frac{(n-2)}{4(n-1)} R\phi^2\right)
Then under a conformal transformation g_{\mu\nu}=\omega^{-2}\tilde{g_{\mu\nu}}, then the Ricci sclar goes to R=\omega^2\tilde{R}+2(n-1)\tilde{g^{\mu\nu}}\omega\left(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\omega\right)-n(n-1)\tilde{g^{\mu\nu}}\left(\tilde{\nabla}_{\mu}\omega\right)\left(\tilde{\nabla}_{\nu}\omega\right). We also have g^{\mu\nu}=\omega^2\tilde{g}^{\mu\nu} and \tilde{\nabla}_{\mu}\phi=\nabla_{\mu}\phi
Using all these suggests that,
\tilde{L}=\omega^{-1}\sqrt{-\tilde{g}}\left(-\frac{1}{2}\omega^2 \tilde{g}^{\mu\nu}\tilde{\nabla}_{\mu}\phi\tilde{\nabla}_{\nu}\phi-\frac{(n-2)}{4(n-1)} \left[\omega^2\tilde{R}+2(n-1)\tilde{g^{\mu\nu}}\omega\left(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\omega\right)-n(n-1)\tilde{g^{\mu\nu}}\left(\tilde{\nabla}_{\mu}\omega\right)\left(\tilde{\nabla}_{\nu}\omega\right)\right]\phi^2\right)
Which can be written as,
\tilde{L}=\sqrt{-\tilde{g}}\left(-\frac{1}{2}\omega \tilde{g}^{\mu\nu}\tilde{\nabla}_{\mu}\phi\tilde{\nabla}_{\nu}\phi-\frac{(n-2)}{4(n-1)} \omega\tilde{R}\phi^2-\frac{1}{2}(n-2)\tilde{g^{\mu\nu}}\left(\tilde{\nabla}_{\mu}\tilde{\nabla}_{\nu}\omega\right)\phi^2+\frac{n}{4}(n-2)\omega^{-1}\tilde{g^{\mu\nu}}\left(\tilde{\nabla}_{\mu}\omega\right)\left(\tilde{\nabla}_{\nu}\omega\right)\phi^2\right)
The statement is that this conformal transformation leaves the scalar field theory invariant, so I was expecting to obtain the same form of the Lagrange density after applying the CT as I had before, but I can't see how the above reduces to this?