Proof That 6 Divides Any Integer N

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integer Proof
Click For Summary
SUMMARY

The discussion provides a proof that an integer N is divisible by 6 if and only if the integer M, defined as M = a0 + 4a1 + 4a2 + ... + 4am, is also divisible by 6. The proof utilizes the properties of divisibility by 2 and 3, establishing that since 2 and 3 are coprime, their individual divisibility conditions can be combined to conclude that 6 divides N. The proof is structured around the decimal expansion of N and the modular arithmetic of powers of 10.

PREREQUISITES
  • Understanding of divisibility rules, specifically for 2 and 3.
  • Familiarity with modular arithmetic.
  • Knowledge of decimal number representation.
  • Basic algebraic manipulation skills.
NEXT STEPS
  • Study the properties of coprime numbers and their implications in number theory.
  • Learn about modular arithmetic and its applications in proofs.
  • Explore other divisibility rules for integers, such as those for 9 and 11.
  • Investigate the relationship between decimal expansions and their properties in number theory.
USEFUL FOR

This discussion is beneficial for mathematicians, students studying number theory, and anyone interested in proofs related to divisibility and modular arithmetic.

Math100
Messages
817
Reaction score
230
Homework Statement
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer
## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Relevant Equations
None.
Proof:

Suppose that ## 6 ## divides ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the
decimal expansion of a positive integer ## N ##.
Note that ## 6=2\dotsb 3 ##.
This means ## 2\mid 6 ## and ## 3\mid 6 ##.
Then ## 2\mid [4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m}]\implies 2\mid N\Leftrightarrow 2\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Now we have ## 3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})\Leftrightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid N ##.
Observe that ## 6\mid N\Leftrightarrow 6\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Thus, ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Conversely, suppose ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Then ## 10^{m}\equiv 4\pmod {6} ## ## \forall m\in\mathbb{N}\implies 10^{m}-4\equiv 0\pmod {6} ## ## \forall m\in\mathbb{N} ##.
This means ## 6\mid (10^{m}-4) ## ## \forall m\in\mathbb{N} ##.
Observe that ## 6\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\implies 6\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) ##.
Thus ## 6\mid N ##.
Therefore, ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
 
  • Like
Likes   Reactions: fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer
## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Relevant Equations:: None.

Proof:

Suppose that ## 6 ## divides ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the
decimal expansion of a positive integer ## N ##.
Note that ## 6=2\dotsb 3 ##.
This means ## 2\mid 6 ## and ## 3\mid 6 ##.
Then ## 2\mid [4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m}]\implies 2\mid N\Leftrightarrow 2\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
I wouldn't use ##\Leftrightarrow ## if you only prove one direction. You said ##6\,|\,N.##
So ##2 \,|\,N = 2\cdot 5 \cdot (a_{m}10^{m-1}+\dotsb +a_{2}10+a_{1}) + a_0## and ##2\,|\,a_0.##
Now, I see that ##2\,|\,(a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})).##
Math100 said:
Now we have ## 3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})\Leftrightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid N ##.
Looks correct. But again, avoid the equivalence. We are only interested in one direction. It is easier to read as
\begin{align*}
3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})&\Rightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\\
&\Rightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]
\end{align*}
Math100 said:
Observe that ## 6\mid N\Leftrightarrow 6\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Thus, ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
The key is again that ##2## and ##3## are coprime. We have shown ##6\,|\,N \Longrightarrow ##
\begin{align*}
2&\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\\
&\text{and}\\
3&\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\\
&\Longrightarrow \\
2\cdot 3 = 6&\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]
\end{align*}
But the last conclusion is only correct for coprime numbers.
E.g. ##2\,|\,12 \wedge 4\,|\,12 \nRightarrow 2\cdot 4= 8\,|\,12.## But ##2## and ##3## are coprime, so ##2\,|\,12 \wedge 3\,|\,12 \nRightarrow 2\cdot 3= 6\,|\,12.##

Math100 said:
Conversely, suppose ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.

Then ## 10^{m}\equiv 4\pmod {6} ## ## \forall m\in\mathbb{N}\implies 10^{m}-4\equiv 0\pmod {6} ## ## \forall m\in\mathbb{N} ##.
This means ## 6\mid (10^{m}-4) ## ## \forall m\in\mathbb{N} ##.
Observe that ## 6\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\implies 6\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) ##.
Thus ## 6\mid N ##.
Therefore, ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Correct. Only the layout isn't optimal:

Observe that
\begin{align*}
6&\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\\
&\implies \\
6&\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) =N
\end{align*}
 
  • Like
Likes   Reactions: Math100
If you want to prove both directions at once, you can use your second part and write:
\begin{align*}
6\,&|\,a_0+4(a_1+\ldots+a_m)=a_0+ 2\cdot (2a_1+\ldots+2a_m) = a_0+a_1+\ldots+a_m+3(a_1+\ldots+a_m)\\
&\Longleftrightarrow \\
2\,&|\,a_0 \wedge 3\,|\,(a_0+a_1+\ldots+a_m)\\
&\Longleftrightarrow \\
2\,&|\,N\wedge 3\,|\,N\\
&\Longleftrightarrow \\
6\,&|\,N
\end{align*}
 
  • Like
Likes   Reactions: Math100
Interesting. Getting to know for m=1,2,3...

10^m =99..99+1 \equiv 1 (\mod 3)
10^m -4 \equiv 0 (\mod 3)
10^m -4 \equiv 0 (\mod 2)
So
10^m \equiv 4 (\mod 6)
a_m 10^m \equiv 4 a_m (\mod 6)
\sum_{m=1}^n a_m 10^m \equiv 4 \sum_{m=1}^n a_m (\mod 6)
a_0+\sum_{m=1}^n a_m 10^m \equiv a_0+4 \sum_{m=1}^n a_m (\mod 6)
 
Last edited:
  • Like
Likes   Reactions: Delta2

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
14
Views
2K