Proof That 6 Divides Any Integer N

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integer Proof
Click For Summary

Homework Help Overview

The discussion revolves around proving that 6 divides a positive integer N based on its decimal expansion. Participants explore the relationship between the divisibility of N and a derived integer M, which is a linear combination of the digits of N.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants examine the implications of divisibility by 2 and 3, questioning the equivalence used in the proof. They discuss the structure of the proof and the conditions under which the conclusions hold, particularly regarding coprimality.

Discussion Status

There is active engagement with the proof structure, with some participants providing alternative formulations and clarifications. The discussion is ongoing, with various interpretations and approaches being explored without a clear consensus.

Contextual Notes

Participants note the importance of understanding the implications of divisibility rules and the specific properties of the numbers involved, particularly regarding the coprimality of 2 and 3.

Math100
Messages
823
Reaction score
234
Homework Statement
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer
## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Relevant Equations
None.
Proof:

Suppose that ## 6 ## divides ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the
decimal expansion of a positive integer ## N ##.
Note that ## 6=2\dotsb 3 ##.
This means ## 2\mid 6 ## and ## 3\mid 6 ##.
Then ## 2\mid [4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m}]\implies 2\mid N\Leftrightarrow 2\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Now we have ## 3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})\Leftrightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid N ##.
Observe that ## 6\mid N\Leftrightarrow 6\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Thus, ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Conversely, suppose ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Then ## 10^{m}\equiv 4\pmod {6} ## ## \forall m\in\mathbb{N}\implies 10^{m}-4\equiv 0\pmod {6} ## ## \forall m\in\mathbb{N} ##.
This means ## 6\mid (10^{m}-4) ## ## \forall m\in\mathbb{N} ##.
Observe that ## 6\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\implies 6\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) ##.
Thus ## 6\mid N ##.
Therefore, ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
 
  • Like
Likes   Reactions: fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer
## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Relevant Equations:: None.

Proof:

Suppose that ## 6 ## divides ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the
decimal expansion of a positive integer ## N ##.
Note that ## 6=2\dotsb 3 ##.
This means ## 2\mid 6 ## and ## 3\mid 6 ##.
Then ## 2\mid [4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m}]\implies 2\mid N\Leftrightarrow 2\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
I wouldn't use ##\Leftrightarrow ## if you only prove one direction. You said ##6\,|\,N.##
So ##2 \,|\,N = 2\cdot 5 \cdot (a_{m}10^{m-1}+\dotsb +a_{2}10+a_{1}) + a_0## and ##2\,|\,a_0.##
Now, I see that ##2\,|\,(a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})).##
Math100 said:
Now we have ## 3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})\Leftrightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid N ##.
Looks correct. But again, avoid the equivalence. We are only interested in one direction. It is easier to read as
\begin{align*}
3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})&\Rightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\\
&\Rightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]
\end{align*}
Math100 said:
Observe that ## 6\mid N\Leftrightarrow 6\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Thus, ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
The key is again that ##2## and ##3## are coprime. We have shown ##6\,|\,N \Longrightarrow ##
\begin{align*}
2&\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\\
&\text{and}\\
3&\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\\
&\Longrightarrow \\
2\cdot 3 = 6&\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]
\end{align*}
But the last conclusion is only correct for coprime numbers.
E.g. ##2\,|\,12 \wedge 4\,|\,12 \nRightarrow 2\cdot 4= 8\,|\,12.## But ##2## and ##3## are coprime, so ##2\,|\,12 \wedge 3\,|\,12 \nRightarrow 2\cdot 3= 6\,|\,12.##

Math100 said:
Conversely, suppose ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.

Then ## 10^{m}\equiv 4\pmod {6} ## ## \forall m\in\mathbb{N}\implies 10^{m}-4\equiv 0\pmod {6} ## ## \forall m\in\mathbb{N} ##.
This means ## 6\mid (10^{m}-4) ## ## \forall m\in\mathbb{N} ##.
Observe that ## 6\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\implies 6\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) ##.
Thus ## 6\mid N ##.
Therefore, ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Correct. Only the layout isn't optimal:

Observe that
\begin{align*}
6&\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\\
&\implies \\
6&\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) =N
\end{align*}
 
  • Like
Likes   Reactions: Math100
If you want to prove both directions at once, you can use your second part and write:
\begin{align*}
6\,&|\,a_0+4(a_1+\ldots+a_m)=a_0+ 2\cdot (2a_1+\ldots+2a_m) = a_0+a_1+\ldots+a_m+3(a_1+\ldots+a_m)\\
&\Longleftrightarrow \\
2\,&|\,a_0 \wedge 3\,|\,(a_0+a_1+\ldots+a_m)\\
&\Longleftrightarrow \\
2\,&|\,N\wedge 3\,|\,N\\
&\Longleftrightarrow \\
6\,&|\,N
\end{align*}
 
  • Like
Likes   Reactions: Math100
Interesting. Getting to know for m=1,2,3...

10^m =99..99+1 \equiv 1 (\mod 3)
10^m -4 \equiv 0 (\mod 3)
10^m -4 \equiv 0 (\mod 2)
So
10^m \equiv 4 (\mod 6)
a_m 10^m \equiv 4 a_m (\mod 6)
\sum_{m=1}^n a_m 10^m \equiv 4 \sum_{m=1}^n a_m (\mod 6)
a_0+\sum_{m=1}^n a_m 10^m \equiv a_0+4 \sum_{m=1}^n a_m (\mod 6)
 
Last edited:
  • Like
Likes   Reactions: Delta2

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
14
Views
2K