dEdt
- 286
- 2
"Proof" that all operators are linear
I've "proven" that all operators acting on a Hilbert space are linear. Obviously this isn't true, so there must be a fault in my reasoning somewhere. I having trouble finding it though, and would appreciate input by someone who can.
Let |\psi\rangle = \alpha |a\rangle+\beta|b\rangle, A be an arbitrary operator, and |\phi\rangle be an arbitrary vector.
\langle\phi|A|\psi\rangle =(\langle\phi|A)|\psi\rangle=(\langle\phi|A) (\alpha |a\rangle+\beta|b\rangle)=\alpha (\langle\phi|A)|a\rangle+\beta(\langle\phi|A) |b\rangle= \alpha \langle\phi|(A|a\rangle)+\beta\langle\phi|(A |b\rangle)= \langle\phi| (\alpha A|a\rangle +\beta A|b\rangle).
So
\langle \phi |(A|\psi \rangle)=\langle\phi| (\alpha A|a\rangle +\beta A|b\rangle)
for all \langle \phi |. Therefore
A(\alpha |a\rangle+\beta|b\rangle)= \alpha A|a\rangle +\beta A|b\rangle.
I've "proven" that all operators acting on a Hilbert space are linear. Obviously this isn't true, so there must be a fault in my reasoning somewhere. I having trouble finding it though, and would appreciate input by someone who can.
Let |\psi\rangle = \alpha |a\rangle+\beta|b\rangle, A be an arbitrary operator, and |\phi\rangle be an arbitrary vector.
\langle\phi|A|\psi\rangle =(\langle\phi|A)|\psi\rangle=(\langle\phi|A) (\alpha |a\rangle+\beta|b\rangle)=\alpha (\langle\phi|A)|a\rangle+\beta(\langle\phi|A) |b\rangle= \alpha \langle\phi|(A|a\rangle)+\beta\langle\phi|(A |b\rangle)= \langle\phi| (\alpha A|a\rangle +\beta A|b\rangle).
So
\langle \phi |(A|\psi \rangle)=\langle\phi| (\alpha A|a\rangle +\beta A|b\rangle)
for all \langle \phi |. Therefore
A(\alpha |a\rangle+\beta|b\rangle)= \alpha A|a\rangle +\beta A|b\rangle.