- #1
Wishe Deom
- 12
- 0
[SOLVED] Proofs for Dirac delta function/distribution
Prove that
[tex]
\delta(cx)=\frac{1}{|c|}\delta(x)
[/tex]
[tex]\delta(x)[/tex] is defined as
[tex]
\delta(x)=\left\{\stackrel{0 for x \neq 0}{\infty for x=0}
[/tex]
It has the properties:
[tex]
\int^{\infty}_{-\infty}\delta(x)dx=1
[/tex]
[tex]
\int^{\infty}_{-\infty}f(x)\delta(x-a)dx=f(a)
[/tex]
Two expressions [tex]D_{1}[/tex] and [tex]D_{2}[/tex] involving [tex]\delta(x)[/tex] are considered equivalent if
[tex]
\int^{\infty}_{-\infty}f(x)D_{1}dx = \int^{\infty}_{-\infty}f(x)D_{2}dx
[/tex]
Starting from
[tex]
\int^{\infty}_{-\infty}f(x)\delta(cx)dx = \int^{\infty}_{-\infty}f(x)\frac{1}{|c|}\delta(x)dx
[/tex]
I make a substitution u=cx, and du=cdx.
[tex]
\frac{1}{c}\int^{\infty}_{-\infty}f(u/c)\delta(u)du = \frac{1}{|c|}\int^{\infty}_{-\infty}f(x)\delta(x)dx
[/tex]
Substitute f(u/c)=g(u), and on right side evaluate integral.
[tex]
\frac{1}{c}\int^{\infty}_{-\infty}g(u)\delta(u)du = \frac{1}{|c|}f(0)
[/tex]
Evaluate left side.
[tex]
\frac{1}{c}g(0)= \frac{1}{|c|}f(0)
[/tex]
By x=u/c, g(0)=f(0), so
[tex]
\frac{1}{c}f(0)= \frac{1}{|c|}f(0)
[/tex]
So, I got this far, but I don't understand where the absolute value on the right side comes from.
Homework Statement
Prove that
[tex]
\delta(cx)=\frac{1}{|c|}\delta(x)
[/tex]
Homework Equations
[tex]\delta(x)[/tex] is defined as
[tex]
\delta(x)=\left\{\stackrel{0 for x \neq 0}{\infty for x=0}
[/tex]
It has the properties:
[tex]
\int^{\infty}_{-\infty}\delta(x)dx=1
[/tex]
[tex]
\int^{\infty}_{-\infty}f(x)\delta(x-a)dx=f(a)
[/tex]
Two expressions [tex]D_{1}[/tex] and [tex]D_{2}[/tex] involving [tex]\delta(x)[/tex] are considered equivalent if
[tex]
\int^{\infty}_{-\infty}f(x)D_{1}dx = \int^{\infty}_{-\infty}f(x)D_{2}dx
[/tex]
The Attempt at a Solution
Starting from
[tex]
\int^{\infty}_{-\infty}f(x)\delta(cx)dx = \int^{\infty}_{-\infty}f(x)\frac{1}{|c|}\delta(x)dx
[/tex]
I make a substitution u=cx, and du=cdx.
[tex]
\frac{1}{c}\int^{\infty}_{-\infty}f(u/c)\delta(u)du = \frac{1}{|c|}\int^{\infty}_{-\infty}f(x)\delta(x)dx
[/tex]
Substitute f(u/c)=g(u), and on right side evaluate integral.
[tex]
\frac{1}{c}\int^{\infty}_{-\infty}g(u)\delta(u)du = \frac{1}{|c|}f(0)
[/tex]
Evaluate left side.
[tex]
\frac{1}{c}g(0)= \frac{1}{|c|}f(0)
[/tex]
By x=u/c, g(0)=f(0), so
[tex]
\frac{1}{c}f(0)= \frac{1}{|c|}f(0)
[/tex]
So, I got this far, but I don't understand where the absolute value on the right side comes from.
Last edited: