Proper usage of Einstein sum notation

Click For Summary
The discussion focuses on the proper use of Einstein sum notation in the context of derivatives related to a kernel function. The user expresses confusion over their application of the notation, particularly regarding the use of the Kronecker delta and the appearance of repeated indices, which violates summation rules. They attempt to derive a specific expression but receive feedback that their notation is incorrect and needs clarification, especially concerning the chain rule for derivatives. Suggestions include redefining terms to avoid repeated indices and using a vector of ones for simplification. The conversation emphasizes the importance of adhering to notation conventions to prevent errors in mathematical expressions.
Gan_HOPE326
Messages
64
Reaction score
7

Homework Statement



I'm dealing with some pretty complex derivatives of a kernel function; long story short, there's a lot of summations going on, so I'm trying to write it down using the Einstein notation, for shortness and hopefully reduction of errors (also for the sake of a paper in which I have to write all this stuff down and possibly do it without blowing past the page's margins). Right now I was testing something that's relatively simple, but I'm not sure I'm using this correctly.

Homework Equations



My test example was a relatively simple derivative. For reference, these are the symbols I am using:

$$ P_{ij} = exp[-(x_i-x_j)^2]
\qquad
P_{ij}' = \frac{dP_{ij}}{dx_i} = -\frac{dP_{ij}}{dx_j}
\qquad
P_i = P_{ij}\delta_{jj}
\qquad
P_i' = P_{ij}'\delta_{jj}
$$

I'm already unsure about the use of ##\delta_{jj}## there, but then comes the problem. As a first exercise I'm trying an example of a derivative, with an additional index ##n##:

$$\frac{d(P_iP_i)}{dx_n}$$

The Attempt at a Solution


[/B]
Here's my solution:

$$\frac{d(P_iP_i)}{dx_n} = 2P_i\frac{dP_i}{dx_n} = 2P_i\left[\frac{dP_i}{dx_i}\delta_{in}-\frac{dP_i}{dx_j}\delta_{jn}\right] = 2P_nP_n' - 2P_iP_{in}'
$$

Which actually works (tested numerically), but seems ugly and wrong to me due to those repeated ##n## indices which seem to imply a summation that isn't really there. Did I do something wrong? Is there some other symbol I'm disregarding or some rule I don't know? Thanks!
 
Physics news on Phys.org
One error is that the same index shouldn't show up more than twice in a term, so ##P_i = P_{ij}\delta_{jj}## doesn't make sense because ##j## appears three times. It's not clear to me what you're trying to do there. What is ##P_i## supposed to be equal to in normal summation notation?
 
vela said:
One error is that the same index shouldn't show up more than twice in a term, so ##P_i = P_{ij}\delta_{jj}## doesn't make sense because ##j## appears three times. It's not clear to me what you're trying to do there. What is ##P_i## supposed to be equal to in normal summation notation?

In regular notation,

$$P_i = \sum_j P_{ij} $$

I suppose I could get the same result by multiplying by an array of ones with a single index, I just don't know if there's a conventional symbol for that.
 
That's probably the most straightforward way. You can define a vector of ones, say ##e = (1, 1, \dots, 1)##, then ##P_i = P_{ij}e_j##.

You also need to clean up the notation for the derivative. The chain rule gives you (with no implied summation here)
$$\frac{d}{dx_n} P_{ij} = \frac{\partial P_{ij}}{\partial x_i}\frac{dx_i}{dx_n} + \frac{\partial P_{ij}}{\partial x_j}\frac{dx_j}{dx_n}.$$
 
vela said:
That's probably the most straightforward way. You can define a vector of ones, say ##e = (1, 1, \dots, 1)##, then ##P_i = P_{ij}e_j##.

You also need to clean up the notation for the derivative. The chain rule gives you (with no implied summation here)
$$\frac{d}{dx_n} P_{ij} = \frac{\partial P_{ij}}{\partial x_i}\frac{dx_i}{dx_n} + \frac{\partial P_{ij}}{\partial x_j}\frac{dx_j}{dx_n}.$$

Yes, right, I'll fix that. The minus sign came from me knowing it appears in the end but it's not correct there.

EDIT: apparently I can't edit the first post in the thread? Sorry for that.
 

Similar threads

Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
7K