Properties of Systems: Memoryless, Causal, time invariant, linear

Click For Summary
The discussion revolves around analyzing the properties of the system defined by the equation y(t)=[x(t-2)]^2. It is determined that the system is memoryless due to the output depending on the input from two seconds prior, indicating it has memory. The system is classified as causal since the output at any time depends only on past or present inputs. It is also deemed time invariant, as shifting the input results in a corresponding shift in the output. However, the system is not linear because it fails the homogeneity property, as scaling the input does not yield a proportional scaling of the output.
itsdinamo
Messages
1
Reaction score
0
Hi, I need a hand with my reasoning on the following question.
I have answered all the questions, but not too sure weather they are correct.
Please guide me or point me on the right direction if they are not correct.
Regards

1. A system defined by the following equation y(t)=[x(t-2)]^2
Is the system Memoryless, Causal, Time Invariant, linear

The attempt at a solution

Memoryless ?

y(t)=x(t-2) has memory, the output is equal to the input two seconds ago.
y(t)=[x(t)]^2 = memoryless, the output at time t0 depends only on the input value at time t0.

Now, y(t)=[x(t-2)]^2 can be thought as y(t)=[x(t-2)*x(t-2)] right?, if so, my best guess would be that the system y(t)=[x(t-2)]^2 has memory.

Causal?
by definition; A system is causal if the output at any time t0 is dependent on the input only for t<=t0.
y(t)=[x(t-2)]^2 = causal

Time Invariant?
by definition if
x(t)--->y(t), then
x(t-t0)--->y(t-t0)
so;
x(t-t0)--->[x((t-t0)-2)]^2
y(t-t0)=[x((t-t0)-2)]^2,
Therefore, y(t)=[x(t-2)]^2 is time invariant.

linear ?
A system is linear if it is homogeneous and additive.
Homogeneous Property
if x(t)--->y(t), then
ax(t)--->ay(t) a= alpha
Additive Property
if x1(t)--->y1(t), and x2(t)--->y2(t), then
x1(t)+x2(t)--->y1(t)+y2(t),

x(t)--->y(t)=[x(t-2)]^2
multiply input by alpha a, then
ax(t)--->[ax(t-2)]^2
ay(t)--->a[(x(t-2))^2]
system y(t)=[x(t-2)]^2 is not homogeneous, thus not linear.
 
Physics news on Phys.org
Looks good. On the last one, it would be a little clearer if you explicitly pointed out ##\alpha x(t) \Rightarrow [\alpha x(t-2)]^2 = \alpha^2 [x(t-2)]^2 \ne \alpha [x(t-2)]^2 = \alpha y(t).##
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K