Proportionality and Translations in Graphs

AI Thread Summary
The discussion centers on the concept of proportionality in relation to graph translations. It asserts that two quantities are directly proportional if their ratio remains constant, typically represented by a straight line through the origin in a Cartesian coordinate system. However, if a graph is translated, such as moving it to the right, the relationship changes, and the original x is no longer proportional to y. Instead, the new variable x+a becomes the proportional quantity, while changes in y remain proportional to changes in x. Thus, while translated graphs can show proportional changes, they do not maintain the strict definition of proportionality.
italia458
Messages
6
Reaction score
0
Quote from Wikipedia:

To determine experimentally whether two physical quantities are directly proportional, one performs several measurements and plots the resulting data points in a Cartesian coordinate system. If the points lie on or close to a straight line that passes through the origin (0, 0), then the two variables are probably proportional, with the proportionality constant given by the line's slope.

I've been told by people that a graph with a straight line on it can be proportional but only if it passes through the origin. I fail to see why that's true. If a translation was applied and it was moved 1 unit to the right then, all of a sudden, x is not proportional to y anymore? That doesn't make sense to me.
 
Mathematics news on Phys.org
In math, two quantities are proportional, by definition, if their ratio is constant.
i.e. if y is proportional to x, then y/x=k - a constant.
The graph would be y=kx - which is a special case of a straight line.

If you translated the graph, changing the reference point for measuring x for instance, then the equation of the line is:

y=k(x+a) and the graph of x vs y no longer passes through the origin.
The quantities x and y are no longer proportional (y/x=k+ka/x - not a constant) because it is a different x - instead it is x+a that is proportional to y ... which is fair, because x+a was the original quantity.

However, we can still say that

y1 = k(x1+a)
y2 = k(x2+a)

y2-y1 = k(x2-x1)

so changes in y are proportional to changes in x.

If two quantities x and y are related by some line y=mx+c, then the relationship is just called "linear".
 
However, we can still say that

y1 = k(x1+a)
y2 = k(x2+a)

y2-y1 = k(x2-x1)

so changes in y are proportional to changes in x.

So if the graph is translated left or right, I can still say that "changes in y are proportional to changes in x" but I can't say "y is proportional to x" - is that correct?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top