giokrutoi said:
ok got it so the way that delta^2 offered
Bounding will need to be done VERY carefully, because the "1/2" limit is pretty strict.
If we use the exact recursion ##a_1 = 3, a_{n+1} = \frac{1}{2} (a_n^2 + 1), n = 1,2, \ldots## and compute exact values up to about ##n = 12##, we see that the sequnece ##a_n## grows rapidly. Using Maple and exact arithmetic whenever it is practical, we get
$$\begin{array}{l}
a_{12} =
150069266781857262292843669672858603\\
4769448280147464726353368783536748476\\
47440046640744854967963947245498612021\\
477388413904375180451656270390552278692\\
1452055548775397792172060973375592551323900\\
39967096883676820619379899904933201414659759\\
5705864255753847966680994896463920097666188\\
3908504636929575700712046785222999071294587426\\
7583554677334026682716307498157604046253018642062\\
0448794191288742297786522568403222907220885\\
\doteq .1500692668 \times 10^{418}
\end{array} $$
More to the point are the values of
$$S_n = \sum_{j=1}^n \frac{1}{a_j+1} $$
for ##n = 1,2, \ldots##.
To 833 digit accuracy we find ##S_{12} = 0.5## (that is, 0.5 followed by 832 zeros), but to 834 digits of precision we find that ##S_{12}## is a tiny bit less than 0.5; it prints as 0.499..., which is 0.4 followed by 833 '9's . Of course, values of ##S_n## for ##n > 12## will be a tiny bit larger, and so the bound of 1/2---if true--- will be very, very close.
Note added in edit: If
$$ S_n = \frac{M_n}{N_n} $$
for integers ##M_n, N_n## we find that ##N_n = 2 M_n+2##, at least for ##n## from 1 to 12. Thus,
$$ S_n = \frac{1}{2} \frac{M_n}{M_n+1} $$
for ##n = 1, 2, \ldots, 12##.
The ##M_n## grow rapidly with ##n##; for example, ##M_{12}## is an 834-digit integer: ##M_{12} \doteq 5.630196208 \times 10^{833}##. Thus
$$ S_{12} \doteq \frac{1}{2} \left( 1 - 1.776137035 \times 10^{-834} \right) . $$