MHB Prove a sum is not the fifth power of any integer

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose $X$ is a number of the form $\displaystyle X=\sum_{k=1}^{60} \epsilon_k \cdot k^{k^k}$, where each $\epsilon_k$ is either 1 or -1.

Prove that $X$ is not the fifth power of any integer.
 
Mathematics news on Phys.org
Solution of other:

WLOG, we may assume that $\epsilon_{60}=1$. Let $\large m=60^{\dfrac{1}{5}({60^{60})}}$.

We show that if $\epsilon_{59}=-1$, then $(m-1)^5<X<m^5$---(1) and

if $\epsilon_{59}=1$, then $m^5<X<(m+1)^5$---(2)

From (1), we note that $60^{60}=(59+1)^{60}>59^{60}+60(59)^{59}>2\cdot 59^{60}$---(3)

so that using (3)

$\large m^3=60^{\dfrac{3}{5}({60^{60})}}>60^{\dfrac{6}{5}({59^{60})}}>59^{({59^{60})}}>59^{({59^{59+1})}}=59\cdot59^{59^{59}}$----(4)

Then

$\begin{align*}(m-1)^5&=m^5-5m^3(m-1)-5m(2m-1)-1\\&<m^5-5m^3(m-2)\\&<m^5-5m^3\\&<m^5-m^3\end{align*}$

and from (4) we have

$\begin{align*}m^5-m^3&<m^5-59\cdot59^{59^{59}}\\&<60^{60^{60}}+\sum_{k=1}^{59} (-1)k^{k^k}\\&\le X\\&<m^5-59^{59^{59}}+58\cdot 58^{58^{58}}\\&<m^5\end{align*}$

A similar argument proves (2) and we're done.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top