MHB Prove Inequality for $x,y,z$ Positive Real Numbers

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion focuses on proving the inequality involving positive real numbers x, y, and z. The inequality compares a combination of fractions involving these variables to a specific expression involving their square roots. Participants explore various mathematical approaches and techniques to validate the inequality. Key methods discussed include algebraic manipulation and the application of known inequalities. The conversation emphasizes the importance of rigorous proof in establishing the validity of the inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $x,\,y,\,z$ are positive real numbers. Prove that

$\dfrac{xy}{x^2+xy+y^2}-\dfrac{1}{9}+\dfrac{yz}{y^2+yz+z^2}-\dfrac{1}{9}+\dfrac{zx}{z^2+zx+x^2}-\dfrac{1}{9}\le \dfrac{2\sqrt{xy+yz+zx}}{3\sqrt{x^2+y^2+z^2}}$
 
Mathematics news on Phys.org
Solution of other:

Note that

$$\begin{align*}\sum_{cyclic}^{}\dfrac{xy}{x^2+xy+y^2}&=1-\left(\sum_{cyclic}^{}\dfrac{1}{3}-\dfrac{xy}{x^2+xy+y^2}\right)\\&=1-\sum_{cyclic}^{}\dfrac{(x-y)^2}{3(x^2+xy+y^2)}\\&\le 1-\sum_{cyclic}^{}\dfrac{(x-y)^2}{3(x^2+xy+y^2+z^2+yz+zx)}\\&=1-\dfrac{2}{3}\cdot \dfrac{x^2+y^2+z^2-xy-yz-zx}{x^2+y^2+z^2+xy+yz+zx}\\&=\dfrac{1}{3}+\dfrac{2}{3}\cdot \dfrac{2(xy+yz+zx)}{x^2+y^2+z^2+xy+yz+zx}\\&\le \dfrac{1}{3}+\dfrac{2}{3}\cdot \dfrac{2(xy+yz+zx)}{\sqrt{x^2+y^2+z^2}\sqrt{xy+yz+zx}}\\&=\dfrac{1}{3}+\dfrac{2}{3}\sqrt{\dfrac{xy+yz+zx}{x^2+y^2+z^2}} \end{align*}$$

Therefore we get

$\dfrac{xy}{x^2+xy+y^2}-\dfrac{1}{9}+\dfrac{yz}{y^2+yz+z^2}-\dfrac{1}{9}+\dfrac{zx}{z^2+zx+x^2}-\dfrac{1}{9}\le \dfrac{2\sqrt{xy+yz+zx}}{3\sqrt{x^2+y^2+z^2}}$ and we're hence done.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K