MHB Prove Inequality for $x,y,z$ Positive Real Numbers

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $x,\,y,\,z$ are positive real numbers. Prove that

$\dfrac{xy}{x^2+xy+y^2}-\dfrac{1}{9}+\dfrac{yz}{y^2+yz+z^2}-\dfrac{1}{9}+\dfrac{zx}{z^2+zx+x^2}-\dfrac{1}{9}\le \dfrac{2\sqrt{xy+yz+zx}}{3\sqrt{x^2+y^2+z^2}}$
 
Mathematics news on Phys.org
Solution of other:

Note that

$$\begin{align*}\sum_{cyclic}^{}\dfrac{xy}{x^2+xy+y^2}&=1-\left(\sum_{cyclic}^{}\dfrac{1}{3}-\dfrac{xy}{x^2+xy+y^2}\right)\\&=1-\sum_{cyclic}^{}\dfrac{(x-y)^2}{3(x^2+xy+y^2)}\\&\le 1-\sum_{cyclic}^{}\dfrac{(x-y)^2}{3(x^2+xy+y^2+z^2+yz+zx)}\\&=1-\dfrac{2}{3}\cdot \dfrac{x^2+y^2+z^2-xy-yz-zx}{x^2+y^2+z^2+xy+yz+zx}\\&=\dfrac{1}{3}+\dfrac{2}{3}\cdot \dfrac{2(xy+yz+zx)}{x^2+y^2+z^2+xy+yz+zx}\\&\le \dfrac{1}{3}+\dfrac{2}{3}\cdot \dfrac{2(xy+yz+zx)}{\sqrt{x^2+y^2+z^2}\sqrt{xy+yz+zx}}\\&=\dfrac{1}{3}+\dfrac{2}{3}\sqrt{\dfrac{xy+yz+zx}{x^2+y^2+z^2}} \end{align*}$$

Therefore we get

$\dfrac{xy}{x^2+xy+y^2}-\dfrac{1}{9}+\dfrac{yz}{y^2+yz+z^2}-\dfrac{1}{9}+\dfrac{zx}{z^2+zx+x^2}-\dfrac{1}{9}\le \dfrac{2\sqrt{xy+yz+zx}}{3\sqrt{x^2+y^2+z^2}}$ and we're hence done.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
6
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Back
Top