MHB Prove Integer Solution for $x_1^3+x_2^3+x_3^3+x_4^3+x_5^3=k$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that the equation $x_1^3+x_2^3+x_3^3+x_4^3+x_5^3=k$ has an integer solution for any integer $k$.
 
Mathematics news on Phys.org
Hint:

Note that $k=6n$ can be represented as a sum of four cubes.
 
The hint follows from:
\[
(x+1)^3 + (x-1)^3 + (-x)^3 + (-x)^3 = 6x.
\]
Moroever, we have that under $\pmod 6$,
$(\pm 1)^3 \equiv \pm1$, $(\pm 2)^3 \equiv \pm 2$,
$3^3 \equiv 3$. We can choose any of the two of the cubes to form
$6x + k$ where $k = 1..5$.
 
magneto said:
The hint follows from:
\[
(x+1)^3 + (x-1)^3 + (-x)^3 + (-x)^3 = 6x.
\]
Moroever, we have that under $\pmod 6$,
$(\pm 1)^3 \equiv \pm1$, $(\pm 2)^3 \equiv \pm 2$,
$3^3 \equiv 3$. We can choose any of the two of the cubes to form
$6x + k$ where $k = 1..5$.

You're right magneto, well done and thanks for participating!:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top