jessjolt2
- 15
- 0
Hey i am trying to understand Spivak's proof of lim x->a of f(x)g(x)=lm (where l is limit of f(x) and m is lim of g(x) )..but i think he is skipping many steps and at one point i don't understand why he is doing something..
ok so the following i understand:
\left|f(x)g(x)-lm\right|< E
\leq\left|f(x)\right|\left|g(x)-m\right| + \left|m\right|\left|f(x)-l\right|<E
\left|f(x)-l\right|\leq1
\left|f(x)\right|\leq\left|l\right|+1
\left|f(x)\right|\left|g(x)-m\right|<(\left|l\right|+1)\left|g(x)-m\right|<E/2
\left|g(x)-m\right|< \frac{E}{2(\left|l\right|+1)}
\left|f(x)\right|\left|g(x)-m\right|<(\left|l\right|+1)\frac{E}{2(\left|l\right|+1)}
\left|f(x)\right|\left|g(x)-m\right|<E/2
ok so now i am guessing that we want to say that \left|m\right|\left|f(x)-l\right|<E/2 so that E/2 + E/2 = E
so can u just say:
\left|m\right|\left|f(x)-l\right|<E/2
\left|f(x)-l\right|<E/(2\left|m\right|)
cus i mean m is just a constant..it can't be restricted like f(x) was...
so:
\left|m\right|\left|f(x)-l\right|<\left|m\right|(E/(2\left|m\right|))= E/2
so then:
\left|f(x)\right|\left|g(x)-m\right| + \left|m\right|\left|f(x)-l\right|< E/2 + E/2 =E
when \left|f(x)-l\right| < min (1, E/(2|m|) ) and \left|g(x)-m\right|<\frac{E}{2(\left|l\right|+1)}
but Spivak is saying that \left|f(x)-l\right| < min (1, E/( 2(|m|+1) ) ) and i have no clue why... help plsss?
ok so the following i understand:
\left|f(x)g(x)-lm\right|< E
\leq\left|f(x)\right|\left|g(x)-m\right| + \left|m\right|\left|f(x)-l\right|<E
\left|f(x)-l\right|\leq1
\left|f(x)\right|\leq\left|l\right|+1
\left|f(x)\right|\left|g(x)-m\right|<(\left|l\right|+1)\left|g(x)-m\right|<E/2
\left|g(x)-m\right|< \frac{E}{2(\left|l\right|+1)}
\left|f(x)\right|\left|g(x)-m\right|<(\left|l\right|+1)\frac{E}{2(\left|l\right|+1)}
\left|f(x)\right|\left|g(x)-m\right|<E/2
ok so now i am guessing that we want to say that \left|m\right|\left|f(x)-l\right|<E/2 so that E/2 + E/2 = E
so can u just say:
\left|m\right|\left|f(x)-l\right|<E/2
\left|f(x)-l\right|<E/(2\left|m\right|)
cus i mean m is just a constant..it can't be restricted like f(x) was...
so:
\left|m\right|\left|f(x)-l\right|<\left|m\right|(E/(2\left|m\right|))= E/2
so then:
\left|f(x)\right|\left|g(x)-m\right| + \left|m\right|\left|f(x)-l\right|< E/2 + E/2 =E
when \left|f(x)-l\right| < min (1, E/(2|m|) ) and \left|g(x)-m\right|<\frac{E}{2(\left|l\right|+1)}
but Spivak is saying that \left|f(x)-l\right| < min (1, E/( 2(|m|+1) ) ) and i have no clue why... help plsss?