titaniumx3
- 53
- 0
Let G be a group and H a subgroup of G. We define the following:
N_{G}(H) = \{g \in G \,\,|\,\, g^{-1}hg \in H,\, for\, all\,\, h\in H\}
Show that N_{G}(H) is a subgroup of G.
_______________________
I've shown that for all x,\, y of N_{G}(H), xy is an element of N_{G}(H), but how do I show that x^{-1} is an element of N_{G}(H) ?
N_{G}(H) = \{g \in G \,\,|\,\, g^{-1}hg \in H,\, for\, all\,\, h\in H\}
Show that N_{G}(H) is a subgroup of G.
_______________________
I've shown that for all x,\, y of N_{G}(H), xy is an element of N_{G}(H), but how do I show that x^{-1} is an element of N_{G}(H) ?