Prove or find counterexamples

  • Thread starter Thread starter mbcsantin
  • Start date Start date
mbcsantin
Messages
16
Reaction score
0
..using only the definition of the binary product:

for any sets A, B, C in a universe U:

(A x B) x C = A x (B x C)

I have no clue how to even get started with this one. Somebody help me please!
 
Physics news on Phys.org
Typically you would want to show that both inclusions are true...but in this case...is the element ((a,b),c) = (a,(b,c)) ?
 
daveyinaz said:
Typically you would want to show that both inclusions are true...but in this case...is the element ((a,b),c) = (a,(b,c)) ?

Yes, they're equal. It's called the Associative Property of Multiplication.

The property which states that for all real numbers a, b, and c, their product is always the same, regardless of their grouping:
(a . b) . c = a . (b . c)
 
I'm sorry..I didn't read the your post correctly if that's the case..was thinking cartesian product.
 
mbcsantin said:
Yes, they're equal. It's called the Associative Property of Multiplication.

The property which states that for all real numbers a, b, and c, their product is always the same, regardless of their grouping:
(a . b) . c = a . (b . c)

Then please go back and ask whatever question you are REALLY asking. In your original post, A, B, and C are sets. Now you are telling us that they are real numbers. Also in your first post you asked about proving "A x(B x C)= (A x B)x C" but now you are saying that is the "Associative Property of Multiplication" which apparently you are accepting as true. At this point, I have no idea what your question really is!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top