Petar Mali
- 283
- 0
Of course every prove of this type have some mistake.
If nobody will see I will post solution!
\hat{A}, \hat{B} - linear, hermitian operator which commutator is
[\hat{A},\hat{B}]=i\hbar\hat{I}
\hat{I} - unit operator
Eigen problems of operators are:
\hat{A}|\psi \rangle=a|\psi \rangle
\hat{B}|\psi \rangle=b|\psi \rangle
|\psi \rangle - normalized eigen vector
\langle \psi|\psi\rangle=1
Look now
[\hat{A},\hat{B}]=i\hbar\hat{I}
Take a sandwich of right and left side with vector |\psi\rangle
\langle \psi|[\hat{A},\hat{B}]|\psi\rangle=i\hbar\langle \psi|\hat{I}|\psi\rangle
\frac{1}{i\hbar}\langle \psi|(\hat{A}\hat{B}-\hat{B}\hat{A})|\psi \rangle=1
\frac{a}{i\hbar}(\langle \psi|\hat{B}|\psi\rangle-\langle \psi|\hat{B}|\psi\rangle)=1
0=1
Where is mistake? :D
If nobody will see I will post solution!
\hat{A}, \hat{B} - linear, hermitian operator which commutator is
[\hat{A},\hat{B}]=i\hbar\hat{I}
\hat{I} - unit operator
Eigen problems of operators are:
\hat{A}|\psi \rangle=a|\psi \rangle
\hat{B}|\psi \rangle=b|\psi \rangle
|\psi \rangle - normalized eigen vector
\langle \psi|\psi\rangle=1
Look now
[\hat{A},\hat{B}]=i\hbar\hat{I}
Take a sandwich of right and left side with vector |\psi\rangle
\langle \psi|[\hat{A},\hat{B}]|\psi\rangle=i\hbar\langle \psi|\hat{I}|\psi\rangle
\frac{1}{i\hbar}\langle \psi|(\hat{A}\hat{B}-\hat{B}\hat{A})|\psi \rangle=1
\frac{a}{i\hbar}(\langle \psi|\hat{B}|\psi\rangle-\langle \psi|\hat{B}|\psi\rangle)=1
0=1
Where is mistake? :D