Is (-infinity, b) an event for any real number b?

Click For Summary
The discussion centers on proving that the interval (-infinity, b) is an event within the sigma-algebra generated by the set of intervals (-infinity, b] for any real number b. Participants explore the three conditions required for a sigma-algebra, focusing on the first condition that S is an event and the third condition regarding countable unions of events. The second condition, which involves proving that the complement [b, infinity) is also an event, is deemed unnecessary for the proof. Ultimately, it is established that using property 3 allows for the conclusion that (-infinity, b) is indeed part of the sigma-algebra S.
kolua
Messages
69
Reaction score
3

Homework Statement


Suppose that the sample space is the set of all real numbers and that every interval of the form (-infinity, b] for any real number b is an event. Show that for any real number b (-infinity, b) must also be an event.

The Attempt at a Solution


use the 3 conditions required for sigma-algebra.
1. S is an event.
2. If A is an event then Acis also an event
3. if Aa, A2... is a countable collection of events, the union of such events is an event.

for the first condition, s is the subset of itself, so it's an event
for the second condition, I am not sure how to prove that [b, infinity) is also an event
 
Physics news on Phys.org
A countable union of events is an event. Can you think of a way of expressing the open interval ##(-\infty,b)## as a countable union of events ##\bigcup_{i=1}^\infty (-\infty,a_i]##? How might you choose the ##a_i##?
 
andrewkirk said:
A countable union of events is an event. Can you think of a way of expressing the open interval ##(-\infty,b)## as a countable union of events ##\bigcup_{i=1}^\infty (-\infty,a_i]##? How might you choose the ##a_i##?
Yes, I know how to prove the third condition. ai=b-1/n as a goes to infinity. But what about the second condition? how should I prove that Ac is an event? Ac=[b, infinity)
 
kolua said:
Yes, I know how to prove the third condition. ai=b-1/n as a goes to infinity. But what about the second condition? how should I prove that Ac is an event? Ac=[b, infinity)

For integer ##n > 0## the set ##(-\infty,b- \frac{1}{n}]^c = (b-\frac{1}{n},\infty)## is an event. We have
$$ [b ,\infty) = \bigcap_{n=1}^{\infty} \left(b - \frac{1}{n}, \infty \right).$$
 
Last edited:
kolua said:
Yes, I know how to prove the third condition. ai=b-1/n as a goes to infinity. But what about the second condition? how should I prove that Ac is an event? Ac=[b, infinity)
You don't have to prove the second condition.

The conditions tell us how to construct the sigma algebra generated by a collection of sets. Given a collection C of sets, the sigma algebra generated by that collection is the smallest collection of sets that (1) contains C and (2) satisfies those three properties.

What you're asked to do is, given that C is the set of intervals ##(-\infty,b]## for ##b\in\mathbb R##, show that for any ##b\in\mathbb R##, the interval ##(-\infty, b)## is in S, the sigma algebra generated by C.

To do that we only need to use property 3. We already know that ##C\subseteq S##. Property 3 shows that it follows from that that for any ##b\in\mathbb R##, the interval ##(-\infty, b)## is also in S.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K