Prove that f is a homeomorphism iff g is continuous, fg=1 and gf=1

docnet
Messages
796
Reaction score
488
Homework Statement
Prove that ##f:X\longrightarrow Y
## is a homeomorphism if, and only if, there exists a continuous map ##g:Y\longrightarrow X## so that ##fg=1## and ##gf=1## are both the identity.
Relevant Equations
none.
Outline of proof:

Part I:

##1.## ##f## is a homeomorphism, so there exists a continuous inverse ##g:Y\longrightarrow X##.

##2.## ##f## is a bijection, hence there is a unique ##f(x)## in ##Y## for every ##x## in ##X##. For every ##f(x)\in Y##, the preimage under ##f## is ##f^{-1}f(x)=x=gf(x)##, so ##gf=1## is the identity.

##3.## There is a unique ##g(y)## in ##X## for every ##y## in ##Y##. For every ##g(y)## in ##X##, the preimage under ##g## is ##g^{-1}g(y)=y=fg(y)##, so ##fg=1## is the identity.

Thus, we have found a continuous ##g:Y\longrightarrow X## such that ##fg## and ##gf## are the identity.

Part II:

##4.## We are given ##g## is continuous and ##f## is arbitrary, so that ##fg=1## and ##gf=1## are both the identity .

##5.## It follows from earlier results (that follows from ##4.##) that ##g## is the continuous inverse of ##f## and it is bijective.

##6.## Continuous functions form a ##\mathbb{R}##-algebra, so ##f## is a continuous function, hence ##f## is a homeomorphism.
 
Physics news on Phys.org
docnet said:
Homework Statement:: Prove that ##f:X\longrightarrow Y
## is a homeomorphism if, and only if, there exists a continuous map ##g:Y\longrightarrow X## so that ##fg=1## and ##gf=1## are both the identity.
Relevant Equations:: none.

Outline of proof:

Part I:

##1.## ##f## is a homeomorphism, so there exists a continuous inverse ##g:Y\longrightarrow X##.

##2.## ##f## is a bijection, hence there is a unique ##f(x)## in ##Y## for every ##x## in ##X##. For every ##f(x)\in Y##, the preimage under ##f## is ##f^{-1}f(x)=x=gf(x)##, so ##gf=1## is the identity.

##3.## There is a unique ##g(y)## in ##X## for every ##y## in ##Y##. For every ##g(y)## in ##X##, the preimage under ##g## is ##g^{-1}g(y)=y=fg(y)##, so ##fg=1## is the identity.

Thus, we have found a continuous ##g:Y\longrightarrow X## such that ##fg## and ##gf## are the identity.
Part I is true by definition. There's nothing to prove.
docnet said:
Part II:

##4.## We are given ##g## is continuous and ##f## is arbitrary, so that ##fg=1## and ##gf=1## are both the identity .

##5.## It follows from earlier results (that follows from ##4.##) that ##g## is the continuous inverse of ##f## and it is bijective.

##6.## Continuous functions form a ##\mathbb{R}##-algebra, so ##f## is a continuous function, hence ##f## is a homeomorphism.
I'm not convinced by that. Clearly ##g## is an inverse for ##f##, so ##f## is a bijection (one-to-one and onto) - I don't think that needs a proof.

The thing that needs proving is that ##f## must be continuous. That is the one thing that is not obvious about the proposition.

I suggest you need to do more than quote something about an ##\mathbb{R}##-algebra!
 
docnet said:
Homework Statement:: Prove that ##f:X\longrightarrow Y
## is a homeomorphism if, and only if, there exists a continuous map ##g:Y\longrightarrow X## so that ##fg=1## and ##gf=1## are both the identity.
Where did you get this question?
 
  • Like
Likes jim mcnamara
You may want to find an exception to the claim that every continuous injection has a continuous inverse.
 
docnet said:
Homework Statement:: Prove that ##f:X\longrightarrow Y
## is a homeomorphism if, and only if, there exists a continuous map ##g:Y\longrightarrow X## so that ##fg=1## and ##gf=1## are both the identity.

You being asked to show that if f is a homeomorphism then its inverse is continuous. But isn't a homeomorphism by definition a continuous map with a continuous inverse? If not, what definition of homeomorphism are you using? You don't state it in your post.
 
pasmith said:
You being asked to show that if f is a homeomorphism then its inverse is continuous. But isn't a homeomorphism by definition a continuous map with a continuous inverse? If not, what definition of homeomorphism are you using? You don't state it in your post.
That implication follows from the definition, but not the converse. Which, despite being proved by the OP, appears not to hold!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top