Prove that f is a homeomorphism iff g is continuous, fg=1 and gf=1

Click For Summary

Homework Help Overview

The discussion revolves around proving that a function \( f: X \longrightarrow Y \) is a homeomorphism if and only if there exists a continuous map \( g: Y \longrightarrow X \) such that \( fg = 1 \) and \( gf = 1 \) are both the identity functions. The subject area pertains to topology and the properties of continuous functions and homeomorphisms.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants outline a proof structure, discussing the implications of \( f \) being a homeomorphism and the existence of a continuous inverse \( g \). Some express skepticism about the necessity of proving that \( f \) is continuous, questioning the completeness of the original proof. Others suggest that the definition of homeomorphism may not be universally accepted, prompting further clarification.

Discussion Status

The discussion is ongoing, with participants exploring different interpretations of the definitions involved. Some have provided guidance on the implications of continuity and bijection, while others are questioning the assumptions and definitions used in the original post.

Contextual Notes

There is a noted concern regarding the completeness of the proof, particularly in establishing the continuity of \( f \) when \( g \) is given as continuous. Participants are also considering the implications of the definitions of homeomorphism and continuous functions in their arguments.

docnet
Messages
796
Reaction score
486
Homework Statement
Prove that ##f:X\longrightarrow Y
## is a homeomorphism if, and only if, there exists a continuous map ##g:Y\longrightarrow X## so that ##fg=1## and ##gf=1## are both the identity.
Relevant Equations
none.
Outline of proof:

Part I:

##1.## ##f## is a homeomorphism, so there exists a continuous inverse ##g:Y\longrightarrow X##.

##2.## ##f## is a bijection, hence there is a unique ##f(x)## in ##Y## for every ##x## in ##X##. For every ##f(x)\in Y##, the preimage under ##f## is ##f^{-1}f(x)=x=gf(x)##, so ##gf=1## is the identity.

##3.## There is a unique ##g(y)## in ##X## for every ##y## in ##Y##. For every ##g(y)## in ##X##, the preimage under ##g## is ##g^{-1}g(y)=y=fg(y)##, so ##fg=1## is the identity.

Thus, we have found a continuous ##g:Y\longrightarrow X## such that ##fg## and ##gf## are the identity.

Part II:

##4.## We are given ##g## is continuous and ##f## is arbitrary, so that ##fg=1## and ##gf=1## are both the identity .

##5.## It follows from earlier results (that follows from ##4.##) that ##g## is the continuous inverse of ##f## and it is bijective.

##6.## Continuous functions form a ##\mathbb{R}##-algebra, so ##f## is a continuous function, hence ##f## is a homeomorphism.
 
Physics news on Phys.org
docnet said:
Homework Statement:: Prove that ##f:X\longrightarrow Y
## is a homeomorphism if, and only if, there exists a continuous map ##g:Y\longrightarrow X## so that ##fg=1## and ##gf=1## are both the identity.
Relevant Equations:: none.

Outline of proof:

Part I:

##1.## ##f## is a homeomorphism, so there exists a continuous inverse ##g:Y\longrightarrow X##.

##2.## ##f## is a bijection, hence there is a unique ##f(x)## in ##Y## for every ##x## in ##X##. For every ##f(x)\in Y##, the preimage under ##f## is ##f^{-1}f(x)=x=gf(x)##, so ##gf=1## is the identity.

##3.## There is a unique ##g(y)## in ##X## for every ##y## in ##Y##. For every ##g(y)## in ##X##, the preimage under ##g## is ##g^{-1}g(y)=y=fg(y)##, so ##fg=1## is the identity.

Thus, we have found a continuous ##g:Y\longrightarrow X## such that ##fg## and ##gf## are the identity.
Part I is true by definition. There's nothing to prove.
docnet said:
Part II:

##4.## We are given ##g## is continuous and ##f## is arbitrary, so that ##fg=1## and ##gf=1## are both the identity .

##5.## It follows from earlier results (that follows from ##4.##) that ##g## is the continuous inverse of ##f## and it is bijective.

##6.## Continuous functions form a ##\mathbb{R}##-algebra, so ##f## is a continuous function, hence ##f## is a homeomorphism.
I'm not convinced by that. Clearly ##g## is an inverse for ##f##, so ##f## is a bijection (one-to-one and onto) - I don't think that needs a proof.

The thing that needs proving is that ##f## must be continuous. That is the one thing that is not obvious about the proposition.

I suggest you need to do more than quote something about an ##\mathbb{R}##-algebra!
 
docnet said:
Homework Statement:: Prove that ##f:X\longrightarrow Y
## is a homeomorphism if, and only if, there exists a continuous map ##g:Y\longrightarrow X## so that ##fg=1## and ##gf=1## are both the identity.
Where did you get this question?
 
  • Like
Likes   Reactions: jim mcnamara
You may want to find an exception to the claim that every continuous injection has a continuous inverse.
 
docnet said:
Homework Statement:: Prove that ##f:X\longrightarrow Y
## is a homeomorphism if, and only if, there exists a continuous map ##g:Y\longrightarrow X## so that ##fg=1## and ##gf=1## are both the identity.

You being asked to show that if f is a homeomorphism then its inverse is continuous. But isn't a homeomorphism by definition a continuous map with a continuous inverse? If not, what definition of homeomorphism are you using? You don't state it in your post.
 
pasmith said:
You being asked to show that if f is a homeomorphism then its inverse is continuous. But isn't a homeomorphism by definition a continuous map with a continuous inverse? If not, what definition of homeomorphism are you using? You don't state it in your post.
That implication follows from the definition, but not the converse. Which, despite being proved by the OP, appears not to hold!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
23
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
1K
  • · Replies 39 ·
2
Replies
39
Views
6K
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K