Prove that If A,B are 3x3 tensors, then the matrix C=AB is also a tensor

Click For Summary

Homework Help Overview

The discussion revolves around proving that the product of two 3x3 tensors, denoted as C=AB, is also a tensor. Participants are exploring the definitions and properties of tensors and their matrix representations.

Discussion Character

  • Conceptual clarification, Assumption checking, Mixed

Approaches and Questions Raised

  • Some participants question the interpretation of what constitutes a tensor and whether a matrix representation is necessary. Others discuss the transformation properties of tensors and how they relate to matrix multiplication.

Discussion Status

Participants are actively engaging with the original poster's question, seeking clarification on the definitions involved. There is a mix of interpretations regarding the nature of tensors and their representations, with some guidance on the properties of tensor products being offered.

Contextual Notes

There is mention of a PDF attachment that contains the original poster's work, which some participants find inconvenient. Additionally, the discussion highlights a potential misunderstanding regarding the rank of tensors and their relationship to matrices.

ReuvenD10
Messages
8
Reaction score
1
Homework Statement
Prove that If A,B are 3x3 tensors, then the matrix C=AB is also tensor
Relevant Equations
the equations below in my solution
I try to solve but i have 1 step in the solution that I don't understand who to solve.

Below in the attach files you can see my solution, the step that I didn't make to prove Marked with a question mark.

thanks for your helps (:
 

Attachments

Physics news on Phys.org
It would help a lot if you would type in your question here (see how you can type formulas on PF: https://www.physicsforums.com/help/latexhelp/) instead of forcing people to download your pdf. An explanation what a ##3\times 3## tensor should be, if not a ##3 \times 3## matrix would be helpful, too.

To me it reads as:
Show that the product of two square matrices of equal size is again a square matrix of the same size.
 
fresh_42 said:
To me it reads as:
Show that the product of two square matrices of equal size is again a square matrix of the same size.

It's funny, I interpreted it slightly differently. That ##\mathcal{A}, \mathcal{B}, \mathcal{C}## are some rank-2 and 3-dimensional tensors and we are asked to prove the tensor transformation properties, i.e. to show that if an equation in matrix representation ##[\mathcal{C}]_{\beta_1} = [\mathcal{A}]_{\beta_1} [\mathcal{B}]_{\beta_1} ## holds with respect to basis ##\beta_1## then ##[\mathcal{C}]_{\beta_2} = [\mathcal{A}]_{\beta_2} [\mathcal{B}]_{\beta_2} ## holds with respect to basis ##\beta_2##. So for instance you have$$
\begin{align*}
\bar{c}_{\mu \nu} &= {\bar{a}_{\mu}}^{\gamma} \bar{b}_{\gamma \nu} = ({T^{\rho}}_{\mu} {T_{\sigma}}^{\gamma} {a_{\rho}}^{\sigma})({T^{\alpha}}_{\gamma}{T^{\beta}}_{\nu} b_{\alpha \beta}) \\

&= {T^{\rho}}_{\mu} {T^{\beta}}_{\nu} {a_{\rho}}^{\alpha} b_{\alpha \beta} \\

&= {T^{\rho}}_{\mu} {T^{\beta}}_{\nu} c_{\rho \beta}

\end{align*}
$$where the ##{T^i}_j## are the transformation coefficients from ##\beta_1## to ##\beta_2##.
 
What is a matrix representation of a tensor? That doesn't make sense. A matrix is already a tensor. And any tensor other than ##\sum u_k\otimes v_k## isn't a matrix. ##3## by ##3## makes only sense for matrices. The rank should be completely irrelevant here.
 
Sure, yes I'm still doing some mental gymnastics to try and understand what is required. Generally a tensor doesn't have a 'matrix representation', but you can naturally map rank-2 tensors in ##n##-dimensional space to ##n \times n## matrices, for ease of computation.

Anyway that's just how I interpreted it, I guess we need to wait for OP to explain what the question actually is asking.
 
Last edited by a moderator:

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
2K