MHB Prove that it converges uniformly

  • Thread starter Thread starter fabiancillo
  • Start date Start date
fabiancillo
Messages
27
Reaction score
1
Hello, I have problems with this exercise:

Prove that the sequence $f_n : [0,1] \longrightarrow{\mathbb{R}}$ defined by $f_n(t)=t^n(1-t)$ converges uniformly to the null function in [0,1]Thanks
 
Physics news on Phys.org
Prove that $\max_{t\in[0,1]}f_n(t)\to0$ when $n\to\infty$.
 
for reaching out about this exercise. It looks like you are trying to prove the uniform convergence of a sequence of functions. To do this, you will need to show that for any given $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that $|f_n(t)|<\epsilon$ for all $n \geq N$ and for all $t \in [0,1]$.

One approach to proving this is to use the Weierstrass M-test. This theorem states that if there exists a sequence of positive numbers $M_n$ such that $|f_n(t)| \leq M_n$ for all $n$ and for all $t \in [0,1]$, and if $\sum_{n=1}^{\infty} M_n$ converges, then the series $\sum_{n=1}^{\infty} f_n(t)$ converges uniformly on $[0,1]$.

In this case, we can choose $M_n = 1$ for all $n$, since $|f_n(t)| \leq 1$ for all $t \in [0,1]$. And since $\sum_{n=1}^{\infty} 1$ is a convergent series, by the Weierstrass M-test, we can conclude that the sequence $f_n$ converges uniformly to the null function on $[0,1]$.

I hope this helps with your exercise. Let me know if you have any other questions or if you need further clarification on any of the steps. Good luck!
 

Similar threads

Replies
1
Views
1K
Replies
21
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
9
Views
2K
Back
Top