Prove that its a linear operator

prove that a linear operator..
T(f):=\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x}

T(kf)=kT(f) part:
T(kf):=k\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2k\frac{\mathrm{df} }{\mathrm{d} x}=k(\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x})=kT(f)\\

is it correct??


Science Advisor
Yes it is. Now what is
[tex]\frac{d(f(x)+ g(x))}{dx}[/tex]
Yes, it's correct, but you skipped a skip in the derivation, if you want to be explicit. It should be:

[tex]T(kf)= \frac{d^2 (kf)}{dx^2} + 2\frac{d(kf)}{dx^2} = k\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2k\frac{\mathrm{df} }{\mathrm{d} x}=k(\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x})=kT(f)\\ [/tex]

Since the entire proof relies on this step, it is important to include it. Now to finish the proof you need to show [tex]T(f+g) = Tf + Tf[/tex].
" T(f + g) = T(f) + T(f) "

Actually, what phreak meant was

" T(f + g) = T(f) + T(g) "
Yes it is. Now what is
[tex]\frac{d(f(x)+ g(x))}{dx}[/tex]
i think its
\frac{d(f(x)+ g(x))}{dx}=\frac{d(f(x)+d(g(x)}{dx}
af ter that
if i got a derivative of a sum and there is dx in the demoniator
then i just brake it into two peaces
T(f):=\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x}\\
T(f+g):=\frac{\mathrm{d^2(f+g)} }{\mathrm{d} x^2}+2\frac{\mathrm{d(f+g)} }{\mathrm{d} x}=\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x}+\frac{\mathrm{d^2g} }{\mathrm{d} x^2}+2\frac{\mathrm{dg} }{\mathrm{d} x}
Yep, that's right.

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving