1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Prove that its a linear operator

  1. Mar 4, 2009 #1
    prove that a linear operator..
    T(f):=\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x}

    T(kf)=kT(f) part:
    T(kf):=k\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2k\frac{\mathrm{df} }{\mathrm{d} x}=k(\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x})=kT(f)\\

    is it correct??
  2. jcsd
  3. Mar 4, 2009 #2


    User Avatar
    Science Advisor

    Yes it is. Now what is
    [tex]\frac{d(f(x)+ g(x))}{dx}[/tex]
  4. Mar 4, 2009 #3
    Yes, it's correct, but you skipped a skip in the derivation, if you want to be explicit. It should be:

    [tex]T(kf)= \frac{d^2 (kf)}{dx^2} + 2\frac{d(kf)}{dx^2} = k\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2k\frac{\mathrm{df} }{\mathrm{d} x}=k(\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x})=kT(f)\\ [/tex]

    Since the entire proof relies on this step, it is important to include it. Now to finish the proof you need to show [tex]T(f+g) = Tf + Tf[/tex].
  5. Mar 4, 2009 #4
    " T(f + g) = T(f) + T(f) "

    Actually, what phreak meant was

    " T(f + g) = T(f) + T(g) "
  6. Mar 4, 2009 #5
    i think its
    \frac{d(f(x)+ g(x))}{dx}=\frac{d(f(x)+d(g(x)}{dx}
  7. Mar 4, 2009 #6
    af ter that
    if i got a derivative of a sum and there is dx in the demoniator
    then i just brake it into two peaces
    T(f):=\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x}\\
    T(f+g):=\frac{\mathrm{d^2(f+g)} }{\mathrm{d} x^2}+2\frac{\mathrm{d(f+g)} }{\mathrm{d} x}=\frac{\mathrm{d^2f} }{\mathrm{d} x^2}+2\frac{\mathrm{df} }{\mathrm{d} x}+\frac{\mathrm{d^2g} }{\mathrm{d} x^2}+2\frac{\mathrm{dg} }{\mathrm{d} x}
  8. Mar 4, 2009 #7
    Yep, that's right.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook