Prove that the exchange operator is Hermitian

Click For Summary

Homework Help Overview

The discussion revolves around proving that the exchange operator, defined as Pψ(1,2) = ψ(2,1), is Hermitian. The original poster seeks to establish the equality <φ|Pψ> = as a criterion for Hermiticity.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the implications of treating the labels 1 and 2 as dummy integration variables, questioning how this affects the integrals involved in the proof.

Discussion Status

Some participants provide insights on the nature of dummy variables in integrals, suggesting that the integrals can be rewritten with different variable names without changing their values. There is an ongoing exploration of whether the integrals yield the same numerical results despite the change in variable names.

Contextual Notes

Participants note that the integrals represent complex numbers and emphasize the importance of understanding that the equality of the integrals does not depend on the specific labels used for integration variables.

Sofie RK
Messages
10
Reaction score
0

Homework Statement


[/B]
Let P be the exchange operator:

Pψ(1,2) = ψ(2,1)

How can I prove that the exchange operator is hermitian?

I want to prove that <φ|Pψ> = <Pφ|ψ>

Homework Equations


[/B]
<φ|Pψ> = <Pφ|ψ> must be true if the operator is hermitian.

The Attempt at a Solution


[/B]
<φ(1,2) | P ψ(1,2) > = ∫φ*(1,2) P ψ(1,2) dτ = ∫φ*(1,2) ψ(2,1) dτ

<P φ(1,2) | ψ(1,2)> = ∫P* φ*(1,2) ψ(1,2) dτ = ∫φ*(2,1) ψ(1,2) dτ
 
Physics news on Phys.org
DrClaude said:
You're almost there. Just remember that inside the integrals, the labels 1 and 2 are simply dummy integration arguments.

See also https://www.physicsforums.com/threads/hermiticity-of-permutation-operator.520787/

If labels 1 and 2 are integration arguments, can I write it as ##x_1## and ##x_2##? Which means that ##x_1## and ##x_2## are integration variables? And I can write the integrals as

$$\int{\phi*(x_1,x_2)\psi(x_2,x_1) dx_1dx_2}$$

and

$$\int{\phi*(x_2,x_1)\psi(x_1,x_2) dx_1dx_2}$$

But, I still don't understand why these integrals are the same. How can I use these integration arguments to prove that?
 
Sofie RK said:
If labels 1 and 2 are integration arguments, can I write it as ##x_1## and ##x_2##? Which means that ##x_1## and ##x_2## are integration variables? And I can write the integrals as

$$\int{\phi*(x_1,x_2)\psi(x_2,x_1) dx_1dx_2}$$

and

$$\int{\phi*(x_2,x_1)\psi(x_1,x_2) dx_1dx_2}$$

But, I still don't understand why these integrals are the same. How can I use these integration arguments to prove that?

Note that these integrals are numbers, not functions, and that ##x_1, x_2## are dummy variables that can be replaced with any other dummy variables. For example:

In your first integral, set ##x_1 = X## and ##x_2 = Y##.

In your second integral, set ##x_1 = Y## and ##x_2 = X##.

Now, compare your integrals.
 
  • Like
Likes   Reactions: DrClaude
PeroK said:
Note that these integrals are numbers, not functions, and that ##x_1, x_2## are dummy variables that can be replaced with any other dummy variables. For example:

In your first integral, set ##x_1 = X## and ##x_2 = Y##.

In your second integral, set ##x_1 = Y## and ##x_2 = X##.

Now, compare your integrals.

Okey, then the integrals will be the same. But if ##x_1## refers to particle 1 and ##x_2## refers to particle 2, why can I choose that ##x_1 = X## in the first integral, ##x_1 = Y## in the second integral, and then compare the integrals when the variables don't refer to the same particle anymore?
 
Sofie RK said:
Okey, then the integrals will be the same. But if ##x_1## refers to particle 1 and ##x_2## refers to particle 2, why can I choose that ##x_1 = X## in the first integral, ##x_1 = Y## in the second integral, and then compare the integrals when the variables don't refer to the same particle anymore?

The definite integrals are just complex numbers. Whatever the origin of the dummy variables, you are looking for numerical equality of two complex numbers.

If you had two particles, say, and some number associated with each of them which you expressed as a definite integral. And you got, perhaps after some calculations:

##n_1 = \int_0^1 f(x_1)dx_1##

and

##n_2 = \int_0^1 f(x_2)dx_2##

Then, you might ponder over whether ##n_1 = n_2##? But, we clearly have:

##\int_0^1 f(x_1)dx_1 = \int_0^1 f(x_2)dx_2 = \int_0^1 f(X)dX##

The value of the definite integral depends only on the function, not on the integration variable.

If you are still not convinced, you might imagine that you know ##f##. Let's say ##f(x) = x##. Then:

##n_1 = \int_0^1 x_1 dx_1 = 1/2##

and

##n_2 = \int_0^1 x_2 dx_2 = 1/2##

And, ##1/2## is ##1/2##.
 
@Sofie RK

Alternatively, try to find two functions ##f## and ##g## where:

##\int_0^1 \int_0^1 f(x_1, x_2)g(x_2,x_1) dx_1 dx_2 \ne \int_0^1 \int_0^1 f(x_2, x_1)g(x_1,x_2) dx_1 dx_2##

If you go through the process of evaluating the integrals, you'll see that the choice of variables themselves can't make any difference to the number that comes out.
 
PeroK said:
The definite integrals are just complex numbers. Whatever the origin of the dummy variables, you are looking for numerical equality of two complex numbers.

If you had two particles, say, and some number associated with each of them which you expressed as a definite integral. And you got, perhaps after some calculations:

##n_1 = \int_0^1 f(x_1)dx_1##

and

##n_2 = \int_0^1 f(x_2)dx_2##

Then, you might ponder over whether ##n_1 = n_2##? But, we clearly have:

##\int_0^1 f(x_1)dx_1 = \int_0^1 f(x_2)dx_2 = \int_0^1 f(X)dX##

The value of the definite integral depends only on the function, not on the integration variable.

If you are still not convinced, you might imagine that you know ##f##. Let's say ##f(x) = x##. Then:

##n_1 = \int_0^1 x_1 dx_1 = 1/2##

and

##n_2 = \int_0^1 x_2 dx_2 = 1/2##

And, ##1/2## is ##1/2##.

Thank you! This really helped!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K