Expectation value in momentum space

  • Thread starter VVS2000
  • Start date
  • #1
VVS2000
145
17
Homework Statement:
The problem was to show that given φ(p), and wave function Ψ(r), prove that <p>= ∫φ(p)*pφ(p)dp and <p²>=∫φ(p)*p²φ(p)dp
Relevant Equations:
Ψ(r)=1/2πℏ ∫ φ(p)exp(ipr/ℏ)dp
<p>=∫Ψ(r)*pΨ(r)dr
so from Fourier transform we know that
Ψ(r)=1/2πℏ∫φ(p)exp(ipr/ℏ)dp
I proved that <p>= ∫φ(p)*pφ(p)dp from <p>=∫Ψ(r)*pΨ(r)dr
so will the same hold any operator??
 

Answers and Replies

  • #2
topsquark
Science Advisor
Insights Author
Gold Member
MHB
1,804
741
Homework Statement:: The problem was to show that given φ(p), and wave function Ψ(r), prove that <p>= ∫φ(p)*pφ(p)dp and <p²>=∫φ(p)*p²φ(p)dp
Relevant Equations:: Ψ(r)=1/2πℏ ∫ φ(p)exp(ipr/ℏ)dp
<p>=∫Ψ(r)*pΨ(r)dr

so from Fourier transform we know that
Ψ(r)=1/2πℏ∫φ(p)exp(ipr/ℏ)dp
I proved that <p>= ∫φ(p)*pφ(p)dp from <p>=∫Ψ(r)*pΨ(r)dr
so will the same hold any operator??
Without seeing your work I can't really say if what you did would hold. But, yes, we can do this with any operator O(p). The usual method involves noting that ##e^{\pm ipr/ \hbar}## commutes with p. Any operator O(p) will commute with the exponentials, so just put that into your proof instead of p. (You may need to prove that you can do this. Think of how you prove that the exponential operator ##e^{\pm ipr/ \hbar}## commutes with p.)

-Dan
 
  • #3
VVS2000
145
17
Without seeing your work I can't really say if what you did would hold. But, yes, we can do this with any operator O(p). The usual method involves noting that ##e^{\pm ipr/ \hbar}## commutes with p. Any operator O(p) will commute with the exponentials, so just put that into your proof instead of p. (You may need to prove that you can do this. Think of how you prove that the exponential operator ##e^{\pm ipr/ \hbar}## commutes with p.)

-Dan
yeah, thing is I am still learning Latex to use it to type equations here, so It would be difficult to get in the whole proof. I tried uploading the pic of my work but there was some issue
yeah I think will try to prove why O(p) will commute
 
  • #4
topsquark
Science Advisor
Insights Author
Gold Member
MHB
1,804
741
yeah, thing is I am still learning Latex to use it to type equations here, so It would be difficult to get in the whole proof. I tried uploading the pic of my work but there was some issue
yeah I think will try to prove why O(p) will commute
Hint: Think Maclaurin series.

-Dan
 

Suggested for: Expectation value in momentum space

Replies
14
Views
890
Replies
30
Views
3K
Replies
6
Views
110
  • Last Post
Replies
1
Views
364
Replies
1
Views
361
Replies
5
Views
256
  • Last Post
Replies
7
Views
444
Replies
23
Views
609
  • Last Post
Replies
2
Views
200
Top