Prove that the expression is divisible by 26460

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Expression
Click For Summary

Discussion Overview

The discussion revolves around proving the divisibility of the expression $27195^8-10887^8+10152^8$ by $26460$. Participants explore various methods, including elementary techniques and modular arithmetic, to approach the problem.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants suggest factoring $26460$ into its prime components ($2^2\cdot 3^3\cdot 5\cdot 7^2$) to simplify the proof of divisibility.
  • One participant proposes that showing divisibility by each prime factor separately could lead to the overall conclusion.
  • Another participant discusses using modular arithmetic to demonstrate that the expression is congruent to zero modulo each of the prime factors.
  • There are claims that the exponent (8) in the expression is irrelevant to the divisibility, suggesting that the same reasoning applies for any exponent.
  • Some participants express uncertainty about the necessity of showing specific modular relations for higher powers of the prime factors, particularly for $3^3$, $5^1$, and $7^2$.
  • Concerns are raised about the validity of certain modular reductions and whether they adequately support the claim of divisibility by $26460$.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the methods required to prove the divisibility. While some agree on the approach of using modular arithmetic, others challenge the sufficiency of the proposed methods and express doubts about the completeness of the arguments presented.

Contextual Notes

There are unresolved issues regarding the assumptions made in the modular reductions and the necessity of demonstrating specific congruences for higher powers of the prime factors. The discussion reflects a range of mathematical reasoning without definitive conclusions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Problem:
Prove that $27195^8-10887^8+10152^8$ is divisible by $26460$.

Attempt:
I grouped the last two terms and manipulated them algebraically and came to the point where I suspect I might have taken the wrong path...here is the last step where I stopped and don't know how to proceed.

$\dfrac{27195^8-10887^8+10152^8}{26460}=\dfrac{3^5\cdot5^7\cdot7^{14}\cdot37^8-7013(2^6\cdot3^6\cdot47^2+3^2\cdot19^2\cdot191^2)(10152^4+10887^4)}{8}$

I'd like to ask, do you think this problem can be solved using only elementary methods?

Thanks in advance.
 
Last edited by a moderator:
Mathematics news on Phys.org
anemone said:
Problem:
Prove that $27195^8-10887^8+10152^8$ is divisible by $26460$.

Attempt:
I grouped the last two terms and manipulated them algebraically and came to the point where I suspect I might have taken the wrong path...here is the last step where I stopped and don't know how to proceed.

$\dfrac{27195^8-10887^8+10152^8}{26460}=\dfrac{3^5\cdot5^7\cdot7^{14}\cdot37^8-7013(2^6\cdot3^6\cdot47^2+3^2\cdot19^2\cdot191^2)(10152^4+10887^4)}{8}$

I'd like to ask, do you think this problem can be solved using only elementary methods?

Thanks in advance.
The best way to make the calculation more manageable is to factorise $26460 = 2^2\cdot 3^3\cdot 5\cdot 7^2$. If you can separately show that $27195^8-10887^8+10152^8$ is divisible by each of the numbers $2^2$, $3^3$, $5$ and $7^2$, then the result will follow.

Take the factor 5, for example. Since $27195$ is a multiple of $5$, so is its eighth power. The other two terms are not multiples of $5$, but here you need to use your idea of grouping those two terms together. In fact, $a^8-b^8$ is a multiple of $a-b$. So $10887^8+10152^8$ is a multiple of $10887-10152 = 735$. That is a multiple of $5$. Putting those results together, you see that $27195^8-10887^8+10152^8$ is a multiple of $5$.

The exact same procedure shows that $27195^8-10887^8+10152^8$ is a multiple of $7^2$. You can use similar ideas to show that it is also a multiple of $3^3$ and of $2^2$. (To deal with $3^3$, notice that $a^8-b^8$ is also a multiple of $a+b$.)
 
Opalg said:
The best way to make the calculation more manageable is to factorise $26460 = 2^2\cdot 3^3\cdot 5\cdot 7^2$. If you can separately show that $27195^8-10887^8+10152^8$ is divisible by each of the numbers $2^2$, $3^3$, $5$ and $7^2$, then the result will follow.

Take the factor 5, for example. Since $27195$ is a multiple of $5$, so is its eighth power. The other two terms are not multiples of $5$, but here you need to use your idea of grouping those two terms together. In fact, $a^8-b^8$ is a multiple of $a-b$. So $10887^8+10152^8$ is a multiple of $10887-10152 = 735$. That is a multiple of $5$. Putting those results together, you see that $27195^8-10887^8+10152^8$ is a multiple of $5$.

The exact same procedure shows that $27195^8-10887^8+10152^8$ is a multiple of $7^2$. You can use similar ideas to show that it is also a multiple of $3^3$ and of $2^2$. (To deal with $3^3$, notice that $a^8-b^8$ is also a multiple of $a+b$.)

Awesome!:cool: I finally understand it now!

Thanks for your help, Opalg!
 
Opalg's answer is very good! A more "heavy machinery" method could also go as follows:

$$26460 = 2^2 \cdot 3^3 \cdot 5^1 \cdot 7^2$$
And we can do the following reductions with a couple modulo operations:

$$27195^8 - 10887^8 + 10152^8 \equiv 3^8 - 3^8 + 0^8 \equiv 0 \pmod{2^2}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 6^8 - 6^8 + 0^8 \equiv 0 \pmod{3^3}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 2^8 + 2^8 \equiv 0 \pmod{5^1}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 9^8 + 9^8 \equiv 0 \pmod{7^2}$$
And invoking the CRT (since $2^2$, $3^3$, $5^1$, $7^2$ are pairwise coprime):

$$\mathbb{Z}_{26460} = \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^3} \times \mathbb{Z}_{5^1} \times \mathbb{Z}_{7^2}$$
$$\therefore$$
$$27195^8 - 10887^8 + 10152^8 \equiv 0 \pmod{26460}$$
This also shows that the exponent (8) is in fact irrelevant, and could be anything.

EDIT: fixed, see ILikeSerena's post below.
 
Last edited:
Bacterius said:
Opalg's answer is very good! A more "heavy machinery" method could also go as follows:

$$26460 = 2^2 \cdot 3^3 \cdot 5^1 \cdot 7^2$$
And we can do the following reductions with a couple modulo operations:

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 0^8 + 0^8 \equiv 0 \pmod{2}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 0^8 + 0^8 \equiv 0 \pmod{3}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 2^8 + 2^8 \equiv 0 \pmod{5}$$

$$27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 2^8 + 2^8 \equiv 0 \pmod{7}$$
And invoking the CRT (since 2, 3, 5, 7 are pairwise coprime):

$$\mathbb{Z}_{26460} = \mathbb{Z}_{2^2} \times \mathbb{Z}_{3^3} \times \mathbb{Z}_{5^1} \times \mathbb{Z}_{7^2}$$
$$\therefore$$
$$27195^8 - 10887^8 + 10152^8 \equiv 0 \pmod{26460}$$
This also shows that the exponent (8) is in fact irrelevant, and could be anything.

I'm afraid that the number $2 \cdot 3 \cdot 5 \cdot 7$ is also zero mod 2, mod 3, mod 5, and mod 7.
But it is not divisible by 26460.

For CRT you need to show the mod relation for $2^2$, $3^3$, $5^1$, and $7^2$.

For instance for $3^3$, we need:

$\hspace{0.5 in}27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 0^8 + 0^8 \equiv 0 \pmod{3^3}$

Still quite doable.
 
ILikeSerena said:
I'm afraid that the number $2 \cdot 3 \cdot 5 \cdot 7$ is also zero mod 2, mod 3, mod 5, and mod 7.
But it is not divisible by 26460.

For CRT you need to show the mod relation for $2^2$, $3^3$, $5^1$, and $7^2$.

For instance for $3^3$, we need:

$\hspace{0.5 in}27195^8 - 10887^8 + 10152^8 \equiv 0^8 - 0^8 + 0^8 \equiv 0 \pmod{3^3}$

Still quite doable.

True, my mistake. Though it's not too difficult to check, just do the same operations but using 4, 27 and 49... (which still work out, it's clear the integers in the problem were carefully chosen to cancel each other out)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K