Prove that this function is nonnegative

  • Thread starter Thread starter sergey_le
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The discussion centers on proving that the function f(x) = (1/2)x^2 - xcos(x) + sin(x) is positive for all x ≠ 0. The derivative f'(x) = x(1 + sin(x)) indicates that f(x) is non-decreasing for x > 0, with f(0) = 0. Participants suggest using the Mean Value Theorem and analyzing critical points where f'(x) = 0 to establish that f(x) > 0 for x > 0. The conclusion drawn is that since f'(x) is positive for certain intervals, f(x) must also be positive in those intervals, leading to the overall assertion that f(x) > 0 for x ≠ 0. The discussion emphasizes the importance of understanding the behavior of the function through its derivative.
  • #31
sergey_le said:
Yes I know how to solve it
x(1 + sin(x)) = 0 when
x=0 or x=3/2+πk
x = 0, yes, but x=3/2+πk is not a solution.
 
Physics news on Phys.org
  • #32
why x=3/2+πk is not a solution?
 
  • #33
sergey_le said:
why x=3/2+πk is not a solution?

I guess you meant
PeroK said:
I guess you meant ##x = \frac{3\pi}{2} + 2\pi k##?
So, @sergey_le, now you know that f'(x) = 0 for x = 0 or for ##x = \frac{3\pi}{2} + 2\pi k##.
What are the values of f(x) at these x values?

You also know that f'(x) > 0 for ##x \ne 0## and for ##x \ne \frac{3\pi}{2} + 2\pi k##.

Remember that you're trying to show that f(x) > 0 for x > 0 as part of the problem.
 
Last edited by a moderator:
  • Like
Likes sergey_le
  • #34
PeroK said:
I guess you meant ##x = \frac{3\pi}{2} + 2\pi k##?
Yes I'm sorry.
I don't know why I make such mistakes
 
  • #35
PeroK said:
I guess you meant

So, @sergey_le, now you know that f'(x) = 0 for x = 0 or for ##x = \frac{3\pi}{2} + 2\pi k##.
What are the values of f(x) at these x values?

You also know that f'(x) > 0 for ##x \ne 0## and for ##x \ne \frac{3\pi}{2} + 2\pi k##.

Remember that you're trying to show that f(x) > 0 for x > 0 as part of the problem.
Thanks so much I finally realized
 
  • #36
I thought it might be worth adding an outline solution to this.

We need to show that ##f(x) > 0 \ ## when ##x \ne 0##, where ##f(x) = \frac 1 2 x^2 - x\cos x + \sin x##.

Note that ##f## is symmetric about the y-axis (##f(x) = f(-x)##), so it is enough to show that ##f(x) > 0## for ##x > 0##. Note also that ##f(0) = 0##.

##f'(x) = x + x\sin x = x(1 + \sin x)##

Therefore ##f'(x) \ge 0## for ##x > 0##, hence (by the mean value theorem) ##f(x) \ge 0## for ##x > 0##.

Note that ##f'(x) = 0## when ##x = \frac 3 2 \pi + 2n\pi##. In particular, ##f'(x) > 0## for ##x \in (0, \pi]##. Therefore, by the mean value theorem, ##f(x) > 0## for ##x \in (0, \pi]##. And, of course, ##f(\pi) > 0##.

Finally, for ##x > \pi## we have ##f'(x) \ge 0##, hence ##f(x) \ge f(\pi) > 0##; and the result follows.
 
  • Like
Likes JD_PM and sergey_le

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K