MHB Prove that triangle BAD is isosceles and....

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Triangle
mathlearn
Messages
331
Reaction score
0
Problem

In the $\triangle ADC$ , $\angle DAC$ or angle $A$ is a right angle, E is the midpoint of AC . The perpendicular drawn to $AC$ from $E$ meets $DC$ at $B$

i.Drawn the given information in a figure & prove that $\triangle BAD$ is isosceles

ii. $AC^2+AD^2=4AB^2$

Diagram


View attachment 6047

Where do I need help

In proving that $\triangle BAD$ is isosceles & $AC^2+AD^2=4AB^2$

This is the first time I attempt to do this kind of a problem (Clapping)

Many Thanks :)
 

Attachments

  • 001.jpg
    001.jpg
    39.9 KB · Views: 125
Mathematics news on Phys.org
i) Start from the fact that B is the midpoint of CD (midpoint theorem).

ii) Start with the fact that 2AB = CD.
 
greg1313 said:
i) Start from the fact that B is the midpoint of CD (midpoint theorem).

ii) Start with the fact that 2AB = CD.

Thank you very much (Happy)

ii) Start with the fact that 2AB = CD

May i know the theorem or the case please :)

So $CB=BD$ (Converse of midpoint theorem)

& as $2AB = CD$ | $\therefore AB= \frac{1}{2} CD$ | $\frac{1}{2} CD $= CB or BD

$BA= BD$ | $\therefore \triangle BAD $ is isosceles

Correct?

In the first instance is it the Converse of the Midpoint theorem

The straight line through the midpoint of one side of a triangle and parallel to another side, bisects the third side.

or

the Midpoint theorem

The straight line segment through the midpoints of two sides of a triangle is
parallel to the third side and equal in length to half of it
 
Let's start with i) because we may use the results of i) to prove ii).

I'd like you to consider the problem carefully and decide which aspect of the midpoint theorem applies to which part of i). Post back with your answer and include your reasoning.

One way to solve i): consider a rectangle with diagonal BD and a rectangle with diagonal AB. Can you, using the midpoint theorem, show that these two rectangles are congruent? What famous theorem tells us that AB = BD?
 
greg1313 said:
Let's start with i) because we may use the results of i) to prove ii).

I'd like you to consider the problem carefully and decide which aspect of the midpoint theorem applies to which part of i). Post back with your answer and include your reasoning.

One way to solve i): consider a rectangle with diagonal BD and a rectangle with diagonal AB. Can you, using the midpoint theorem, show that these two rectangles are congruent? What famous theorem tells us that AB = BD?

Hey greg1313 :)

The triangle $CBE$ is equal to $ABE$ because they have equal angle in $E$ and equal sides $CE=EA$ and $BE=BE$.

So now what I have is $CB=BA$

Then the theorem should be the converse of the midpoint theorem

The straight line through the midpoint of one side of a triangle and parallel to another side, bisects the third side.

Many Thanks :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
4
Views
1K
Replies
3
Views
1K
Replies
6
Views
3K
Replies
17
Views
5K
Replies
1
Views
2K
Back
Top