MHB Prove the equation has 4 distinct real solutions

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The equation $x^3(x+1)=(x+k)(2x+k)$ has been proven to have four distinct real solutions for the parameter range $0.75 PREREQUISITES

  • Understanding of polynomial equations and their properties
  • Familiarity with the concept of distinct real solutions
  • Knowledge of the Intermediate Value Theorem
  • Basic algebraic manipulation skills
NEXT STEPS
  • Research methods for proving the uniqueness of solutions in polynomial equations
  • Explore the application of the Intermediate Value Theorem in real analysis
  • Study techniques for finding explicit solutions to cubic equations
  • Investigate the implications of parameter ranges on the behavior of polynomial functions
USEFUL FOR

Mathematicians, students studying algebra and calculus, and anyone interested in the properties of polynomial equations and their solutions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $0.75<k<1$.

Prove the equation $x^3(x+1)=(x+k)(2x+k)$ has 4 distinct real solutions and find these solutions in explicit form.
 
Mathematics news on Phys.org
anemone said:
Let $0.75<k<1$.

Prove the equation $x^3(x+1)=(x+k)(2x+k)$ has 4 distinct real solutions and find these solutions in explicit form.

$x^3(x+1)-(x+k)(2x+k) = x^4 +x^3 -3kx -k^2 $
I was thinking about something like this

$(x-a)(x-b)(x-c)(x-d) = x^4 + x^3 - 2x^2 -3kx -k^2 $
but this
$(x^2 +ax + b)(x^2 + cx+ d) = x^4 + x^3 - 2x^2 -3kx -k^2 $ easier

Expanding

$x^4 + x^3(a+c) + x^2 ( b+ ac + d) + x(ad+bc) + bd = x^4 + x^3 - 2x^2 -3kx -k^2 $

we have
$ bd = -k^2 $
$ad +bc = -3k $
$b+d+ac = -2 $
$a+c = 1 $

In the third the result does not have k, and in the first b,d depend on k so there is a big possibility that $b=-d = -k $
So
Second equation
$ak - kc = -3 \Rightarrow a-c = -3 $
Last one $a+c = 1 \Rightarrow 2a = -2 , a = -1 , c =2 $
So
$(x^2 -x - k)(x^2 + 2x+ +k) = x^4 + x^3 - 2x^2 -3kx -k^2 $
$ x = \dfrac{ 1 \mp \sqrt{1 +4k}}{2} $
$ x = \dfrac{-2 \mp \sqrt{4 -4k}}{2} $
 
Amer said:
$x^3(x+1)-(x+k)(2x+k) = x^4 +x^3 -3kx -k^2 $
I was thinking about something like this

$(x-a)(x-b)(x-c)(x-d) = x^4 + x^3 - 2x^2 -3kx -k^2 $
but this
$(x^2 +ax + b)(x^2 + cx+ d) = x^4 + x^3 - 2x^2 -3kx -k^2 $ easier

Expanding

$x^4 + x^3(a+c) + x^2 ( b+ ac + d) + x(ad+bc) + bd = x^4 + x^3 - 2x^2 -3kx -k^2 $

we have
$ bd = -k^2 $
$ad +bc = -3k $
$b+d+ac = -2 $
$a+c = 1 $

In the third the result does not have k, and in the first b,d depend on k so there is a big possibility that $b=-d = -k $
So
Second equation
$ak - kc = -3 \Rightarrow a-c = -3 $
Last one $a+c = 1 \Rightarrow 2a = -2 , a = -1 , c =2 $
So
$(x^2 -x - k)(x^2 + 2x+ +k) = x^4 + x^3 - 2x^2 -3kx -k^2 $
$ x = \dfrac{ 1 \mp \sqrt{1 +4k}}{2} $
$ x = \dfrac{-2 \mp \sqrt{4 -4k}}{2} $

Well done, Amer! And thanks for participating...but, how are you going to show all of these four $x$ values are differ from one another?:)
 
$f(x) = x^4 +x^3 -3kx -k^2 $
$ f(x) = x^3(x+1) - (x+k)(2x+k) $
For
$ 0.75 < k < 1 $

$ f(1) = 2 - 3k-k^2 < 0 $ for the any k in the range
$f(2) = 8(3) - (2+k)(4+k) > 0 $
we have a root in (1,2)

$f(-1) > 0 , f(-2) < 0 $
we have a root in (-2,-1)

Not sure about this one
$ f(0) < 0 , f(-0.5) >0 $
root at (-0.5 , 0)

still one
 
Hi Amer,

In order to prove that the given equation has 4 distinct real solutions, it will be enough if we prove that $\dfrac{-2+\sqrt{4-4k}}{2}<\dfrac{1-\sqrt{1+4k}}{2}$.

From $0.75<k<1$, we get that $-2<\dfrac{-2+\sqrt{4-4k}}{2}<-1.5$ and $-0.618<\dfrac{1-\sqrt{1+4k}}{2}<-0.5$.

Hence we can conclude that $\dfrac{-2+\sqrt{4-4k}}{2}<\dfrac{1-\sqrt{1+4k}}{2}$ which in turn gives us

$\dfrac{-2-\sqrt{4-4k}}{2}<\dfrac{-2+\sqrt{4-4k}}{2}<\dfrac{1-\sqrt{1+4k}}{2}<\dfrac{1+\sqrt{1+4k}}{2}$:)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K